Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Thymosins β-4 and β-10 are expressed in bovine ovarian follicles and upregulated in cumulus cells during meiotic maturation

Mohamad Salhab A , Pascal Papillier A , Christine Perreau A , Catherine Guyader-Joly B , Joelle Dupont A , Pascal Mermillod A and Svetlana Uzbekova A C
+ Author Affiliations
- Author Affiliations

A INRA, UMR85 Physiologie de la Reproduction et des Comportements, CNRS,UMR6175, Université de Tours; F-37380 Nouzilly, France.

B UNCEIA Département Recherche et Développement, 13 rue Jouët,94704 Maisons-Alfort, France.

C Corresponding author. Email: suzbekova@tours.inra.fr

Reproduction, Fertility and Development 22(8) 1206-1221 https://doi.org/10.1071/RD10015
Submitted: 28 January 2010  Accepted: 19 May 2010   Published: 1 October 2010

Abstract

β-Thymosins are small proteins that regulate the actin cytoskeleton and are involved in cell motility, differentiation, the induction of metalloproteinases, in anti-inflammatory processes and tumourigenesis. However, their roles in the ovary have not yet been elucidated. Using transcriptomics and real time reverse transcription–polymerase chain reaction validation, the present study demonstrates that thymosin β-4 (TMSB4) and thymosin β-10 (TMSB10) are upregulated in bovine cumulus cells (CCs) during in vitro maturation of cumulus–oocyte complexes (COCs) in parallel with an increase in mRNA expression of HAS2, COX2 and PGR genes. Using immunocytochemistry, both proteins were found to be localised mainly in granulosa cells, CCs and oocytes, in both the cytoplasm and nucleus, as well as being colocalised with F-actin stress fibres in CCs. Using different maturation mediums, we showed that the expression of TMSB10, but not TMSB4, was positively correlated with COC expansion and progesterone secretion and negatively correlated with apoptosis. Immunofluorescence, coupled with terminal deoxyribonucleotidyl transferase-mediated dUTP–digoxigenin nick end-labelling (TUNEL), demonstrated the absence of TMSB4 and/or TMSB10 in apoptotic cells. TMSB10 expression was higher in COCs matured in vivo than in vitro, and differences related to the age of the animal were observed. TMSB4 and/or TMSB10 expression was unchanged, whereas HAS2 overexpressed in CCs from oocytes that developed to the blastocyst stage in vitro compared with those that did not. Thus, TMSB4 and/or TMSB10 ovarian expression patterns suggest that these two thymosins may be involved in cumulus modifications during maturation.

Additional keywords: cow, ovary.


Acknowledgements

The authors thank Gael Ramé and Thierry Delpuech for technical assistance in the slaughterhouse and Virginie Mallard for help with the progesterone measurements. The authors are very grateful to Dr Hannah Brown for her help with English expression. This work was part of the program ANR-08-GENM-033 (OSCILE), sponsored by a grant from the French National Research Agency.


References

Al-Nedawi, K. N. , Czyz, M. , Bednarek, R. , Szemraj, J. , Swiatkowska, M. , Cierniewska-Cieslak, A. , Wyczolkowska, J. , and Cierniewski, C. S. (2004). Thymosin beta 4 induces the synthesis of plasminogen activator inhibitor 1 in cultured endothelial cells and increases its extracellular expression. Blood 103, 1319–1324.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Assidi, M. , Dufort, I. , Ali, A. , Hamel, M. , Algriany, O. , Dielemann, S. , and Sirard, M. A. (2008). Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol. Reprod. 79, 209–222.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Badamchian, M. , Damavandy, A. A. , Damavandy, H. , Wadhwa, S. D. , Katz, B. , and Goldstein, A. L. (2007). Identification and quantification of thymosin beta4 in human saliva and tears. Ann. N. Y. Acad. Sci. 1112, 458–465.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bednarek, R. , Boncela, J. , Smolarczyk, K. , Cierniewska-Cieslak, A. , Wyroba, E. , and Cierniewski, C. S. (2008). Ku80 as a novel receptor for thymosin beta4 that mediates its intracellular activity different from G-actin sequestering. J. Biol. Chem. 283, 1534–1544.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bernard, C. , Degrelle, S. , Ollier, S. , Campion, E. , and Cassar-Malek, I. , et al. (2005). A cDNA macro-array resource for gene expression profiling in ruminant tissues involved in reproduction and production (milk and beef) traits. J. Physiol. Pharmacol. 56(Suppl. 3), 215–224.
PubMed |

Bock-Marquette, I. , Saxena, A. , White, M. D. , Dimaio, J. M. , and Srivastava, D. (2004). Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466–472.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Buccione, R. , Schroeder, A. C. , and Eppig, J. J. (1990). Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43, 543–547.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chen, C. , Li, M. , Yang, H. , Chai, H. , Fisher, W. , and Yao, Q. (2005). Roles of thymosins in cancers and other organ systems. World J. Surg. 29, 264–270.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Choi, S. Y. , Kim, D. K. , Eun, B. , Kim, K. , Sun, W. , and Kim, H. (2006). Anti-apoptotic function of thymosin-beta in developing chick spinal motoneurons. Biochem. Biophys. Res. Commun. 346, 872–878.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Conti, M. , Hsieh, M. , Park, J. Y. , and Su, Y. Q. (2006). Role of the epidermal growth factor network in ovarian follicles. Mol. Endocrinol. 20, 715–723.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Dieleman, S. J. , Hendriksen, P. J. , Viuff, D. , Thomsen, P. D. , and Hyttel, P. , et al. (2002). Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology 57, 5–20.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Donnay, I. , Auquier, P. , Kaidi, S. , Carolan, C. , Lonergan, P. , Mermillod, P. , and Massip, A. (1998). Vitrification of in vitro produced bovine blastocysts: methodological studies and developmental capacity. Anim. Reprod. Sci. 52, 93–104.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Donnay, I. , Faerge, I. , Grondahl, C. , Verhaeghe, B. , Sayoud, H. , Ponderato, N. , Galli, C. , and Lazzari, G. (2004). Effect of prematuration, meiosis activating sterol and enriched maturation medium on the nuclear maturation and competence to development of calf oocytes. Theriogenology 62, 1093–1107.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

dos Remedios, C. G. , Chhabra, D. , Kekic, M. , Dedova, I. V. , Tsubakihara, M. , Berry, D. A. , and Nosworthy, N. J. (2003). Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol. Rev. 83, 433–473.
PubMed |  CAS |

Fan, Y. , Gong, Y. , Ghosh, P. K. , Graham, L. M. , and Fox, P. L. (2009). Spatial coordination of actin polymerization and ILK-Akt2 activity during endothelial cell migration. Dev. Cell 16, 661–674.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ford, J. J. , Vakharia, D. D. , Anderson, L. L. , and Klindt, J. (1990). Thymosin-beta 4 concentrations during the estrous cycle and after hypophyseal stalk transection of female pigs. Proc. Soc. Exp. Biol. Med. 193, 185–189.
PubMed |  CAS |

Furnus, C. C. , de Matos, D. G. , and Moses, D. F. (1998). Cumulus expansion during in vitro maturation of bovine oocytes: relationship with intracellular glutathione level and its role on subsequent embryo development. Mol. Reprod. Dev. 51, 76–83.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gutiérrez-Pabello, J. A. , McMurray, D. N. , and Adams, L. G. (2002). Upregulation of thymosin beta-10 by Mycobacterium bovis infection of bovine macrophages is associated with apoptosis. Infect. Immun. 70, 2121–2127.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Guyader-Joly, C. , Ponchon, S. , Thuard, J. , Durand, M. , Nibart, M. , Marquant-Leguienne, B. , and Humblot, P. (1997). Effects of superovulation on repeated ultrasound guided oocyte collection and in vitro embryo production in pregnant heifers. Theriogenology 47, 157.
Crossref | GoogleScholarGoogle Scholar |

Hall, A. K. , Aten, R. , and Behrman, H. R. (1991a). Differential modulation of thymosin genes in the immature rat ovary by gonadotropins. Mol. Cell. Endocrinol. 79, 37–43.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hall, A. K. , Aten, R. , and Behrman, H. R. (1991b). Thymosin gene expression is modulated by pregnant mare’s serum gonadotropin, human chorionic gonadotropin, and prostaglandin F2 alpha in the immature rat ovary. Endocrinology 128, 951–957.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hall, N. R. , O’Grady, M. P. , and Menzies, R. A. (1992). Thymic regulation of the hypothalamic–pituitary–gonadal axis. Int. J. Immunopharmacol. 14, 353–359.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hannappel, E. (2007). beta-Thymosins. Ann. N. Y. Acad. Sci. 1112, 21–37.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Harper, K. M. , and Brackett, B. G. (1993). Bovine blastocyst development after in vitro maturation in a defined medium with epidermal growth factor and low concentrations of gonadotropins. Biol. Reprod. 48, 409–416.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Holm, P. , Booth, P. J. , Schmidt, M. H. , Greve, T. , and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hsiao, H. L. , Wang, W. S. , Chen, P. M. , and Su, Y. (2006). Overexpression of thymosin beta-4 renders SW480 colon carcinoma cells more resistant to apoptosis triggered by FasL and two topoisomerase II inhibitors via downregulating Fas and upregulating Survivin expression, respectively. Carcinogenesis 27, 936–944.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Huff, T. , Muller, C. S. , Otto, A. M. , Netzker, R. , and Hannappel, E. (2001). beta-Thymosins, small acidic peptides with multiple functions. Int. J. Biochem. Cell Biol. 33, 205–220.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Huff, T. , Otto, A. M. , Muller, C. S. , Meier, M. , and Hannappel, E. (2002). Thymosin beta4 is released from human blood platelets and attached by factor XIIIa (transglutaminase) to fibrin and collagen. FASEB J. 16, 691–696.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Huff, T. , Rosorius, O. , Otto, A. M. , Muller, C. S. , Ballweber, E. , Hannappel, E. , and Mannherz, H. G. (2004). Nuclear localisation of the G-actin sequestering peptide thymosin beta4. J. Cell Sci. 117, 5333–5341.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Humblot, P. , Holm, P. , Lonergan, P. , Wrenzycki, C. , and Lequarré, A.-S. , et al. (2005). Effect of stage of follicular growth during superovulation on developmental competence of bovine oocytes. Theriogenology 63, 1149–1166.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ito, M. , Iguchi, K. , Usui, S. , and Hirano, K. (2009). Overexpression of thymosin beta4 increases pseudopodia formation in LNCaP prostate cancer cells. Biol. Pharm. Bull. 32, 1101–1104.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Khatir, H. , Lonergan, P. , Carolan, C. , and Mermillod, P. (1996). Prepubertal bovine oocyte: a negative model for studying oocyte developmental competence. Mol. Reprod. Dev. 45, 231–239.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kölle, S. , Dubielzig, S. , Reese, S. , Wehrend, A. , Konig, P. , and Kummer, W. (2009). Ciliary transport, gamete interaction, and effects of the early embryo in the oviduct: ex vivo analyses using a new digital videomicroscopic system in the cow. Biol. Reprod. 81, 267–274.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lee, S. H. , Zhang, W. , Choi, J. J. , Cho, Y. S. , Lee, S. H. , Kim, J. W. , Hu, L. , Xu, J. , Liu, J. , and Lee, J. H. (2001). Overexpression of the thymosin beta-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene 20, 6700–6706.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lonergan, P. , Carolan, C. , Van Langendonckt, A. , Donnay, I. , Khatir, H. , and Mermillod, P. (1996). Role of epidermal growth factor in bovine oocyte maturation and preimplantation embryo development in vitro. Biol. Reprod. 54, 1420–1429.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Mælan, A. E. , Rasmussen, T. K. , and Larsson, L. I. (2007). Localization of thymosin beta10 in breast cancer cells: relationship to actin cytoskeletal remodeling and cell motility. Histochem. Cell Biol. 127, 109–113.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mannherz, H. G. , and Hannappel, E. (2009). The beta-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil. Cytoskel. 66, 839–851.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

McCormack, S. A. , Ray, R. M. , Blanner, P. M. , and Johnson, L. R. (1999). Polyamine depletion alters the relationship of F-actin, G-actin, and thymosin beta4 in migrating IEC-6 cells. Am. J. Physiol. 276, C459–C468.
PubMed |  CAS |

McKenzie, L. J. , Pangas, S. A. , Carson, S. A. , Kovanci, E. , Cisneros, P. , Buster, J. E. , Amato, P. , and Matzuk, M. M. (2004). Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 19, 2869–2874.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Moon, H. S. , Even-Ram, S. , Kleinman, H. K. , and Cha, H. J. (2006). Zyxin is upregulated in the nucleus by thymosin beta4 in SiHa cells. Exp. Cell Res. 312, 3425–3431.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nuttinck, F. , Reinaud, P. , Tricoire, H. , Vigneron, C. , Peynot, N. , Mialot, J. P. , Mermillod, P. , and Charpigny, G. (2002). Cyclooxygenase-2 is expressed by cumulus cells during oocyte maturation in cattle. Mol. Reprod. Dev. 61, 93–101.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nuttinck, F. , Marquant-Le Guienne, B. , Clement, L. , Reinaud, P. , Charpigny, G. , and Grimard, B. (2008). Expression of genes involved in prostaglandin E2 and progesterone production in bovine cumulus–oocyte complexes during in vitro maturation and fertilization. Reproduction 135, 593–603.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Oh, S. Y. , Song, J. H. , Gil, J. E. , Kim, J. H. , Yeom, Y. I. , and Moon, E. Y. (2006). ERK activation by thymosin-beta-4 (TB4) overexpression induces paclitaxel-resistance. Exp. Cell Res. 312, 1651–1657.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Oyamada, T. , Iwayama, H. , and Fukui, Y. (2004). Additional effect of epidermal growth factor during in vitro maturation for individual bovine oocytes using a chemically defined medium. Zygote 12, 143–150.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Philp, D. , Scheremeta, B. , Sibliss, K. , Zhou, M. , Fine, E. L. , Nguyen, M. , Wahl, L. , Hoffman, M. P. , and Kleinman, H. K. (2006). Thymosin beta4 promotes matrix metalloproteinase expression during wound repair. J. Cell. Physiol. 208, 195–200.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Procházka, R. , Srsen, V. , Nagyová, E. , Miyano, T. , and Flechon, J. E. (2000). Developmental regulation of effect of epidermal growth factor on porcine oocyte–cumulus cell complexes: nuclear maturation, expansion, and F-actin remodeling. Mol. Reprod. Dev. 56, 63–73.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roson, E. , Gallego, R. , Garcia-Caballero, T. , Fraga, M. , Dominguez, F. , and Beiras, A. (1993). Evolution of prothymosin alpha and proliferating cell nuclear antigen (PCNA) immunoreactivity through the development of rat ovarian follicles. Histochem. J. 25, 497–501.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Russell, D. L. , and Salustri, A. (2006). Extracellular matrix of the cumulus-oocyte complex. Semin. Reprod. Med. 24, 217–227.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Salamone, D. F. , Damiani, P. , Fissore, R. A. , Robl, J. M. , and Duby, R. T. (2001). Biochemical and developmental evidence that ooplasmic maturation of prepubertal bovine oocytes is compromised. Biol. Reprod. 64, 1761–1768.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Santelli, G. , Califano, D. , Chiappetta, G. , Vento, M. T. , Bartoli, P. C. , Zullo, F. , Trapasso, F. , Viglietto, G. , and Fusco, A. (1999). Thymosin beta-10 gene overexpression is a general event in human carcinogenesis. Am. J. Pathol. 155, 799–804.
PubMed |  CAS |

Schoenfelder, M. , and Einspanier, R. (2003). Expression of hyaluronan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle. Biol. Reprod. 69, 269–277.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Schoenfelder, M. , Schams, D. , and Einspanier, R. (2003). Steroidogenesis during in vitro maturation of bovine cumulus oocyte complexes and possible effects of tri-butyltin on granulosa cells. J. Steroid Biochem. Mol. Biol. 84, 291–300.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sun, H. Q. , and Yin, H. L. (2007). The beta-thymosin enigma. Ann. N. Y. Acad. Sci. 1112, 45–55.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sun, H. Q. , Kwiatkowska, K. , and Yin, H. L. (1996). beta-Thymosins are not simple actin monomer buffering proteins. Insights from overexpression studies. J. Biol. Chem. 271, 9223–9230.
PubMed |  CAS |

Sutovský, P. , Fléchon, J. E. , and Pavlok, A. (1995). F-Actin is involved in control of bovine cumulus expansion. Mol. Reprod. Dev. 41, 521–529.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tanghe, S. , Van Soom, A. , Nauwynck, H. , Coryn, M. , and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tanghe, S. , Van Soom, A. , Mehrzad, J. , Maes, D. , Duchateau, L. , and de Kruif, A. (2003). Cumulus contributions during bovine fertilization in vitro. Theriogenology 60, 135–149.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tapp, H. , Deepe, R. , Ingram, J. , Yarmola, E. , Bubb, M. , Hanley, E. , and Gruber, H. (2009). Exogenous thymosin beta(4) prevents apoptosis in human intervertebral annulus cells in vitro. Biotech. Histochem. 84, 287–294.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tosca, L. , Froment, P. , Solnais, P. , Ferre, P. , Foufelle, F. , and Dupont, J. (2005). Adenosine 5′-monophosphate-activated protein kinase regulates progesterone secretion in rat granulosa cells. Endocrinology 146, 4500–4513.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tosca, L. , Uzbekova, S. , Chabrolle, C. , and Dupont, J. (2007). Possible role of 5′AMP-activated protein kinase in the metformin-mediated arrest of bovine oocytes at the germinal vesicle stage during in vitro maturation. Biol. Reprod. 77, 452–465.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Uzumcu, M. , and Lin, Y. C. (1994). Characterization of the stimulatory actions of thymic factor(s) on basal and gonadotropin-induced steroidogenesis in cultured rat granulosa cells. Mol. Cell. Endocrinol. 105, 209–216.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wise, T. , and Maurer, R. R. (1991). Characterization of thymosin alpha 1 and beta 4 during the bovine estrual period: effects of elevated estradiol and progestin. Biol. Reprod. 45, 57–63.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yang, K. T. , Lin, C. Y. , Huang, H. L. , Liou, J. S. , and Chien, C. Y. , et al. (2008). Expressed transcripts associated with high rates of egg production in chicken ovarian follicles. Mol. Cell. Probes 22, 47–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yu, F. X. , Lin, S. C. , Morrison-Bogorad, M. , Atkinson, M. A. , and Yin, H. L. (1993). Thymosin beta 10 and thymosin beta 4 are both actin monomer sequestering proteins. J. Biol. Chem. 268, 502–509.
PubMed |  CAS |

Yu, F. X. , Lin, S. C. , Morrison-Bogorad, M. , and Yin, H. L. (1994). Effects of thymosin beta 4 and thymosin beta 10 on actin structures in living cells. Cell Motil. Cytoskeleton 27, 13–25.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |