Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Regulation of folliculogenesis and the determination of ovulation rate in ruminants

R. J. Scaramuzzi A B M , D. T. Baird C , B. K. Campbell D , M.-A. Driancourt E , J. Dupont A , J. E. Fortune F , R. B. Gilchrist G , G. B. Martin H , K. P. McNatty I , A. S. McNeilly J , P. Monget A , D. Monniaux A , C. Viñoles H K and R. Webb L
+ Author Affiliations
- Author Affiliations

A INRA, UMR85 Physiologie de la Reproduction et des Comportements, Centre INRA de Tours, 37380 Nouzilly, France.

B Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mimms, Hertfordshire AL9 7TA, UK.

C University of Edinburgh, Centre for Reproductive Biology, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.

D University of Nottingham, Division of Obstetrics and Gynaecology, The Queen’s Medical Centre, Nottingham NG7 2UH, UK.

E Intervet Schering Plough Animal Health, Intervet Pharma R & D, BP 67131, 49071 Beaucouzé, France.

F College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

G Robinson Institute, School of Paediatrics and Reproductive Health, Medical School South, University of Adelaide, SA 5005, Australia.

H Animal Production Systems, UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia.

I School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.

J Medical Research Council Human Reproductive Sciences Unit, The University of Edinburgh Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.

K INIA Tacuarembó, Ruta 5, km 386, Tacuarembó, Uruguay.

L University of Nottingham, Division of Animal Science, School of Biosciences, Loughborough, Leicestershire LE12 5RD, UK.

M Corresponding author. Email: rex.scaramuzzi@orange.fr

Reproduction, Fertility and Development 23(3) 444-467 https://doi.org/10.1071/RD09161
Submitted: 11 July 2009  Accepted: 5 October 2010   Published: 16 March 2011

Abstract

The paper presents an update of our 1993 model of ovarian follicular development in ruminants, based on knowledge gained from the past 15 years of research. The model addresses the sequence of events from follicular formation in fetal life, through the successive waves of follicular growth and atresia, culminating with the emergence of ovulatory follicles during reproductive cycles. The original concept of five developmental classes of follicles, defined primarily by their responses to gonadotrophins, is retained: primordial, committed, gonadotrophin-responsive, gonadotrophin-dependent and ovulatory follicles. The updated model has more extensive integration of the morphological, molecular and cellular events during folliculogenesis with systemic events in the whole animal. It also incorporates knowledge on factors that influence oocyte quality and the critical roles of the oocyte in regulating follicular development and ovulation rate. The original hypothetical mechanisms determining ovulation rate are retained but with some refinements; the enhanced viability of gonadotrophin-dependent follicles and increases in the number of gonadotrophin-responsive follicles by increases in the throughput of follicles to this stage of growth. Finally, we reexamine how these two mechanisms, which are thought not to be mutually exclusive, appear to account for most of the known genetic and environmental effects on ovulation rate.

Additional keywords: ewe, follicle, nutrition, oocyte, ovary.


References

Abayasekara, D. R., and Wathes, D. C. (1999). Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot. Essent. Fatty Acids 61, 275–287.
Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltF2gtw%3D%3D&md5=961313c9d5650e5ed867dfa8e84eb613CAS | 10670689PubMed |

Adams, N. R., Abordi, J. A., Briegel, J. R., and Sanders, M. R. (1994). Effect of diet on the clearance of oestradiol-17beta in the ewe. Biol. Reprod. 51, 668–674.
Effect of diet on the clearance of oestradiol-17beta in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVCju70%3D&md5=d94a227dd31f663b8f4844db6ef10e08CAS | 7819448PubMed |

Baird, D. T. (1987). A model for follicular selection and ovulation: lessons from superovulation. J. Steroid Biochem. 27, 15–23.
A model for follicular selection and ovulation: lessons from superovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXovVaqtQ%3D%3D&md5=68eb2fd84b58f7c4f4989f0de62753daCAS | 3121918PubMed |

Baird, D. T., and Campbell, B. K. (1998). Follicle selection in sheep with breed differences in ovulation rate. Mol. Cell. Endocrinol. 145, 89–95.
Follicle selection in sheep with breed differences in ovulation rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1eitr4%3D&md5=906b9bc2cb39a3ab1d01cd0daf926164CAS | 9922104PubMed |

Baird  D. T., and McNeilly  A. S. (1987). Widening the “gate” by infusion of FSH before luteal regression in Welsh Mountain Ewes increases ovulation rate increases. In ‘Neuroendocrinology of Reproduction: Proceedings of VIth Reiner de Graaf Symposium Nijmegen, Netherlands’. (Ed. R. Rolland.) pp. 68–73. (Excerpta Medica: Amsterdam.)

Ben Saïd, S., Lomet, D., Chesneau, D., Lardic, L., Canepa, S., Guillaume, D., Briant, C., Fabre-Nys, C., and Caraty, A. (2007). Differential estradiol requirement for the induction of estrus behavior and the luteinizing hormone surge in two breeds of sheep. Biol. Reprod. 76, 673–680.

Bilodeau-Goeseels, S., Sasseville, M., Guillemette, C., and Richard, F. J. (2007). Effects of adenosine monophosphate-activated kinase activators on bovine oocyte nuclear maturation in vitro. Mol. Reprod. Dev. 74, 1021–1034.
Effects of adenosine monophosphate-activated kinase activators on bovine oocyte nuclear maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOhurY%3D&md5=5fd77ceee17c470cea346289d31dc719CAS | 17290417PubMed |

Bodensteiner, K. J., Clay, C. M., Moeller, C. L., and Sawyer, H. R. (1999). Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biol. Reprod. 60, 381–386.
Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlygsQ%3D%3D&md5=eeb92a53193eb03f253acb57990a49bcCAS | 9916005PubMed |

Bodin, L., Di Pasquale, E., Fabre, S., Bontoux, M., Monget, P., Persani, L., and Mulsant, P. (2007). A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep. Endocrinology 148, 393–400.
A novel mutation in the bone morphogenetic protein 15 gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFSiuw%3D%3D&md5=7654def7fce01781e91fc768ef34c2b8CAS | 17038554PubMed |

Campbell  B. K. (1988). Factors affecting ovulation rate in sheep and cattle. PhD thesis, University of Sydney.

Campbell, B. K., and Baird, D. T. (2001). Inhibin A is a follicle-stimulating hormone-responsive marker of granulosa cell differentiation, which has both autocrine and paracrine actions in sheep. J. Endocrinol. 169, 333–345.
Inhibin A is a follicle-stimulating hormone-responsive marker of granulosa cell differentiation, which has both autocrine and paracrine actions in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFartL0%3D&md5=0bc7f9e0a5bab4267f2d7ba4fe64cd62CAS | 11312150PubMed |

Campbell, B. K., Scaramuzzi, R. J., and Webb, R. (1996). Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media. J. Reprod. Fertil. 106, 7–16.
Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVCnsw%3D%3D&md5=e5c6e32480ae5ae00e2ee4c82ba84283CAS | 8667349PubMed |

Campbell, B. K., Dobson, H., Baird, D. T., and Scaramuzzi, R. J. (1999). Examination of the relative role of FSH and LH in the mechanism of ovulatory follicle selection in sheep. J. Reprod. Fertil. 117, 355–367.
Examination of the relative role of FSH and LH in the mechanism of ovulatory follicle selection in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFOqtr4%3D&md5=9f469f1395a7b697c3b1f77f13656104CAS | 10690204PubMed |

Chagas, L. M., Bass, J. J., Blache, D., Burke, C. R., Kay, J., Lindsay, D. R., Lucy, M. C., Martin, G. B., Meier, S., Rhodes, F. M., Roche, J. R., Thatcher, W. W., and Webb, R. (2007). New perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing cows. J. Dairy Sci. 90, 4022–4032.
New perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsleqtb0%3D&md5=4227c24f1dee08785063f8fbfdd855e7CAS | 17699018PubMed |

de Smedt, V., Crozet, N., and Gall, L. (1994). Morphological and functional changes accompanying the acquisition of meiotic competence in ovarian goat oocyte. J. Exp. Zool. 269, 128–139.
Morphological and functional changes accompanying the acquisition of meiotic competence in ovarian goat oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3mslCjsg%3D%3D&md5=694674e8cd2914f03ed0ccd7713321c4CAS | 8207384PubMed |

di Clemente, N., Wilson, C., Faure, E., Boussin, L., Carmillo, P., Tizard, R., Picard, J. Y., Vigier, B., Josso, N., and Cate, R. (1994). Cloning, expression, and alternative splicing of the receptor for for anti-Müllerian hormone. Mol. Endocrinol. 8, 1006–1020.
Cloning, expression, and alternative splicing of the receptor for for anti-Müllerian hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1aiu7s%3D&md5=cc5eef5a27537c65d7edf1f9225e2791CAS | 7997230PubMed |

Dobson, H., Campbell, B. K., Gordon, B. M., and Scaramuzzi, R. J. (1997). Endocrine activity of induced persistent follicles in sheep. Biol. Reprod. 56, 208–213.
Endocrine activity of induced persistent follicles in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1OrtQ%3D%3D&md5=732d8dee3d57cb0d500199fd10f6c564CAS | 9002651PubMed |

Dong, J., Albertini, D. F., Nishimori, K., Kumar, T. R., Lu, N., and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535.
Growth differentiation factor-9 is required during early ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1GrsL0%3D&md5=07a2013be8b9aaa5b12b11f41fae05b5CAS | 8849725PubMed |

Downing, J. A., Joss, J., Connell, P., and Scaramuzzi, R. J. (1995). Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain. J. Reprod. Fertil. 103, 137–145.
Ovulation rate and the concentrations of gonadotrophic and metabolic hormones in ewes fed lupin grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVGht78%3D&md5=45d90627f4fccf9bf06be02fe0beab04CAS | 7707290PubMed |

Duggavathi, R., Bartlewski, P. M., Agg, E., Flint, S., Barrett, D. M., and Rawlings, N. C. (2005). The effect of the manipulation of follicle-stimulating hormone (FSH)-peak characteristics on follicular wave dynamics in sheep: does an ovarian-independent endogenous rhythm in FSH secretion exist? Biol. Reprod. 72, 1466–1474.
The effect of the manipulation of follicle-stimulating hormone (FSH)-peak characteristics on follicular wave dynamics in sheep: does an ovarian-independent endogenous rhythm in FSH secretion exist?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFGqsbY%3D&md5=3264d5f8c0f419489fc2ab8903aa6956CAS | 15744018PubMed |

Eckery, D. C., Moeller, C. L., Nett, T. M., and Sawyer, H. R. (1997). Localization and quantification of binding sites for follicle-stimulating hormone, luteinizing hormone, growth hormone and insulin-like growth factor I in sheep ovarian follicles. Biol. Reprod. 57, 507–513.
Localization and quantification of binding sites for follicle-stimulating hormone, luteinizing hormone, growth hormone and insulin-like growth factor I in sheep ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlOrtr8%3D&md5=678e3e013c733d0737f825a79b31a93bCAS | 9282983PubMed |

Engelhardt, H., Smith, K. B., McNeilly, A. S., and Baird, D. T. (1993). Expression of mRNA for inhibin subunits and ovarian secretion of inhibin and oestradiol throughout the sheep oestrous cycle. Biol. Reprod. 49, 281–294.
Expression of mRNA for inhibin subunits and ovarian secretion of inhibin and oestradiol throughout the sheep oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXotVQ%3D&md5=c3be092ef7f2df569bc808dcd24b3132CAS | 8373951PubMed |

Eppig, J. J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829–838.
Oocyte control of ovarian follicular development and function in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWjsw%3D%3D&md5=bcab819b1164cc65fc109559ad1c77e7CAS | 11732978PubMed |

Eppig, J. J., Wigglesworth, K., Pendola, F., and Hirao, Y. (1997). Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol. Reprod. 56, 976–984.
Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFKgtbg%3D&md5=d224567475abaa89fdad481fa8c179b9CAS | 9096881PubMed |

Evans, A. C., Duffy, P., Hynes, N., and Boland, M. P. (2000). Waves of follicle development during the oestrous cycle in sheep. Theriogenology 53, 699–715.
Waves of follicle development during the oestrous cycle in sheep.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFaisA%3D%3D&md5=7f135f3e9372ab1b26b6aea8270e9d9dCAS | 10735037PubMed |

Fabre, S., Pierre, A., Pisselet, C., Mulsant, P., Lecerf, F., Pohl, J., Monget, P., and Monniaux, D. (2003). The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality. J. Endocrinol. 177, 435–444.
The Booroola mutation in sheep is associated with an alteration of the bone morphogenetic protein receptor-IB functionality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslCgtbY%3D&md5=ab9d65afbbb1390afe64dd17d3ec2acfCAS | 12773124PubMed |

Fabre, S., Pierre, A., Mulsant, P., Bodin, L., Di Pasquale, E., Persani, L., Monget, P., and Monniaux, D. (2006). Regulation of ovulation rate in mammals: contribution of sheep genetic models. Reprod. Biol. Endocrinol. 4, 20.
Regulation of ovulation rate in mammals: contribution of sheep genetic models.Crossref | GoogleScholarGoogle Scholar | 16611365PubMed |

Fortune, J. E. (2003). The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim. Reprod. Sci. 78, 135–163.
The early stages of follicular development: activation of primordial follicles and growth of preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gsbc%3D&md5=0f5588ede6325a2864842110fa1bb10bCAS | 12818642PubMed |

Fortune, J. E., Cushman, R. A., Wahl, C. M., and Kito, S. (2000). The primordial to primary follicle transition. Mol. Cell. Endocrinol. 163, 53–60.
The primordial to primary follicle transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvV2msrg%3D&md5=762686b22f5cf6820c2439e95ef01a01CAS | 10963874PubMed |

Fouladi-Nashta, A. A., Gutiérrez, C. G., Gong, J. G., Garnsworthy, P. C., and Webb, R. (2007). Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows. Biol. Reprod. 77, 9–17.
Impact of dietary fatty acids on oocyte quality and development in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gsb0%3D&md5=ce6fd01f70a6a7a803e2db1a02a11595CAS | 17344470PubMed |

Froment, P., Bontoux, M., Pisselet, C., Monget, P., and Dupont, J. (2005). PTEN expression in ovine granulosa cells increases during terminal follicular growth. FEBS Letters 579, 2376–2382.
| 1:CAS:528:DC%2BD2MXjsVGktLo%3D&md5=09f0f8ca992411bd9dbeb94bcf56b36cCAS | 15848175PubMed |

Gallet  C., Dupont  J., Monniaux  D., Campbell  B. K., and Scaramuzzi  R. J. (2009). The infusion of glucose reduces circulating concentrations of oestradiol and the level of aromatase in granulosa cells of ewes in the luteal phase of the oestrous cycle. In ‘Ruminant Physiology: Proceedings of the XIth International Symposium on Ruminant Physiology’. (Eds Y. Chilliard, F. Glasser, Y. Faulconnier, F. Bocquier, I. Veissier and M. Doreau.) pp. 742–743. (Wageningen Academic Publishers: Wageningen, The Netherlands.)

Galloway, S. M., McNatty, K. P., Cambridge, L. M., Laitinen, M. P., Juengel, J. L., Jokiranta, T. S., McLaren, R. J., Luiro, K., Dodds, K. G., Montgomery, G. W., Beattie, A. E., Davis, G. H., and Ritvos, O. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279–283.
Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFKltbs%3D&md5=9326bcd9237d2b181f1d11a104125965CAS | 10888873PubMed |

Garnsworthy, P. C., Fouladi-Nashta, A. A., Mann, G. E., Sinclair, K. D., and Webb, R. (2009). Effect of dietary-induced changes in plasma insulin concentrations during the early post-partum period on pregnancy rate in dairy cows. Reproduction 137, 759–768.
Effect of dietary-induced changes in plasma insulin concentrations during the early post-partum period on pregnancy rate in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2nur4%3D&md5=1206ad1166e806a5a5ead77e83606d12CAS | 19129370PubMed |

Garverick, H. A., Juengel, J. L., Smith, P., Burkhart, M. N., Perry, G. A., Smith, M. F., and McNatty, K. P. (2010). Development of the ovary and ontongeny of mRNA and protein for P450 aromatase (arom) and oestrogen receptors (ER) alpha and beta during early fetal life in cattle ovaries. Anim. Reprod. Sci. 117, 24–33.
Development of the ovary and ontongeny of mRNA and protein for P450 aromatase (arom) and oestrogen receptors (ER) alpha and beta during early fetal life in cattle ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjt7jP&md5=cb6831f16694de26b3c9fa0ce6261abbCAS | 19501990PubMed |

Gilchrist, R. B., and Thompson, J. G. (2007). Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67, 6–15.
Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro.Crossref | GoogleScholarGoogle Scholar | 17092551PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82–83, 431–446.
Oocyte–somatic cell interactions during follicle development in mammals.Crossref | GoogleScholarGoogle Scholar | 15271471PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=ec4994d45ddf61de382a6d71e49eeaa6CAS | 18175787PubMed |

Glister, C., Groome, N. P., and Knight, P. G. (2006). Bovine follicle development is associated with divergent changes in activin-A, inhibin-A and follistatin and the relative abundance of different isoforms in follicular fluid. J. Endocrinol. 188, 215–225.
Bovine follicle development is associated with divergent changes in activin-A, inhibin-A and follistatin and the relative abundance of different isoforms in follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOlu74%3D&md5=d796c532d5adc6c1c0ccff76db3dda25CAS | 16461548PubMed |

Gray, P. C., Bilezekjian, L. M., and Vale, W. (2001). Antagonism of activin by inhibin and inhibin receptors: a functional role for betaglycan-glycan. Mol. Cell. Endocrinol. 180, 47–53.
Antagonism of activin by inhibin and inhibin receptors: a functional role for betaglycan-glycan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVaru78%3D&md5=eeaa118031846bd6be392a3237951164CAS | 11451571PubMed |

Groome, N. P., Illingworth, P. J., O’Brien, M., Cooke, I., Ganesan, T. S., Baird, D. T., and McNeilly, A. S. (1994). Detection of dimeric inhibin throughout the human menstrual cycle by two-site enzyme immunoassay. Clin. Endocrinol. 40, 717–723.
| 1:CAS:528:DyaK2cXlt1Gms7c%3D&md5=2325cd08cd8cc4132390326a743f45d6CAS |

Groome, N. P., Illingworth, P. J., O’Brien, M., Pai, R., Rodger, F. E., Mather, J., and McNeilly, A. S. (1996). Measurement of dimeric inhibin-B throughout the human menstrual cycle. J. Clin. Endocrinol. Metab. 81, 1401–1405.
Measurement of dimeric inhibin-B throughout the human menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xit1Ons7s%3D&md5=82fe2b75b8648912d98ea1750dbdeff3CAS | 8636341PubMed |

Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R., and Galloway, S. M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900–909.
Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Sitb0%3D&md5=0f0b61d17bf633d50d7ca2daaaf3a4dcCAS | 14627550PubMed |

Hardie, D. G. (2004). The AMP-activated protein kinase pathway – new players upstream and downstream. J. Cell Sci. 117, 5479–5487.
The AMP-activated protein kinase pathway – new players upstream and downstream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFagur7N&md5=5bd3343fa3bbba0620f43fd408aef20dCAS | 15509864PubMed |

Hourvitz, A., Kuwahara, A., Hennebold, J. D., Tavares, A. B., Negishi, H., Lee, T. H., Erickson, G. F., and Adashi, E. Y. (2002). The regulated expression of the pregnancy-associated plasma protein-A in the rodent ovary: a proposed role in the development of dominant follicles and of corpora lutea. Endocrinology 143, 1833–1844.
The regulated expression of the pregnancy-associated plasma protein-A in the rodent ovary: a proposed role in the development of dominant follicles and of corpora lutea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFOjsb0%3D&md5=9e46e904d3ce4c3aa8cd4cde300052b7CAS | 11956166PubMed |

Hudson  N. L., Berg  M., Hamel  K., Smith  P., Lawrence  S. B., Whiting  L., Juengel  J. L., and McNatty  K. P. (2007). Effects of active immunization against growth differentiation factor 9 (GDF9) &/or bone morphogenetic protein 15 (BMP15) on ovarian function in cattle. Abstract 111. In ‘Reproduction in Domestic Ruminants VI’. (Eds J. L. Juengel, J. F. Murray and M. F. Smith.) p. 561. (Nottingham University Press: Nottingham, UK.)

Hunzicker-Dunn, M., and Maizels, E. T. (2006). FSH signalling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell. Signal. 18, 1351–1359.
FSH signalling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xls1aqtrg%3D&md5=fdbc5bd2ff4343742d5b41cd6f68127cCAS | 16616457PubMed |

Hussein, T. S., Froiland, D. A., Amato, F., Thompson, J. G., and Gilchrist, R. B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118, 5257–5268.
Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWru7rK&md5=cd5206931fe74a00e34a042bb1fa7eaaCAS | 16263764PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=f5422aafc3526afdfce8cf9e6068acc2CAS | 16854407PubMed |

Hyttel, P., Fair, T., Callesen, H., and Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23–32.
Oocyte growth, capacitation and final maturation in cattle.Crossref | GoogleScholarGoogle Scholar |

Irving-Rodgers, H. F., and Rodgers, R. J. (2006). Extracellular matrix of the developing ovarian follicle. Semin. Reprod. Med. 24, 195–203.
Extracellular matrix of the developing ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2jsr3P&md5=6ae4bc7eec5d94b75363317800662091CAS | 16944417PubMed |

Jorritsma, R., Langendijk, P., Kruip, T. A., Wensing, T. H., and Noordhuizen, J. P. (2005). Associations between energy metabolism, LH pulsatility and first ovulation in early lactating cows. Reprod. Domest. Anim. 40, 68–72.
Associations between energy metabolism, LH pulsatility and first ovulation in early lactating cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVGnt70%3D&md5=7344649a7437e3c1ebe03f717882a253CAS | 15655004PubMed |

Juengel, J. L., and McNatty, K. P. (2005). The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum. Reprod. Update 11, 143–160.
| 1:CAS:528:DC%2BD2MXitV2jtrg%3D&md5=e8b8a69c9f05d1a260f6ae8b91bf7101CAS | 15705960PubMed |

Juengel, J. L., Hudson, N. L., Heath, D. A., Smith, P., Reader, K. L., Lawrence, S. B., O’Connell, A. R., Laitinen, M. P. E., Cranfield, M., Groome, N. P., Ritvos, O., and McNatty, K. P. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for follicular development in sheep. Biol. Reprod. 67, 1777–1789.
Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for follicular development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVelsLo%3D&md5=69638768bdc2f4d5cb0e98b8bf4a0049CAS | 12444053PubMed |

Juengel  J. L., Haydon  L. J., Still  L., Smith  P., Hudson  N. L., and McNatty  K. P. (2007). Expression of mRNAs encoding factor in the germ line, alpha (FIGα) within the developing ovary and in small growing follicles in sheep. Abstract 115. In ‘Reproduction in Domestic Ruminants VI’. (Eds J. L. Juengel, J. F. Murray and M. F. Smith.) p. 565. (Nottingham University Press: Nottingham, UK.)

Kaivo-oja, N., Jeffery, L. A., Ritvos, O., and Mottershead, D. G. (2006). Smad signalling in the ovary. Reprod. Biol. Endocrinol. 4, 21.
Smad signalling in the ovary.Crossref | GoogleScholarGoogle Scholar | 16611366PubMed |

Kendall, N. R., Guitierrez, C. G., Scaramuzzi, R. J., Baird, D. T., Webb, R., and Campbell, B. K. (2004). Direct in vivo effects of leptin on ovarian steroidogenesis in sheep. Reproduction 128, 757–765.
Direct in vivo effects of leptin on ovarian steroidogenesis in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSkuw%3D%3D&md5=bcfb6af7e6e59c56429585812992dbb7CAS | 15579593PubMed |

Kerin, J. F., Edmonds, D. K., Warnes, G. M., Cox, L. W., Seamark, R. F., Matthews, C. D., Young, G. B., and Baird, D. T. (1981). Morphological and functional relations of Graafian follicle growth to ovulation in women using ultrasonic, laparoscopic and biochemical measurements. Br. J. Obstet. Gynaecol. 88, 81–90.
| 1:STN:280:DyaL3M7htVCisQ%3D%3D&md5=005a42d15b42e3a0649692055a5ba7caCAS | 6450609PubMed |

Knight, P. G., and Glister, C. (2006). TGF-β superfamily members and ovarian follicle development. Reproduction 132, 191–206.
TGF-β superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=e3952199251c52a7267a52410fc3d2c7CAS | 16885529PubMed |

Land, R. B. (1976). The sensitivity of the ovulation rate of Finnish Landrace and Blackface ewes to exogenous oestrogen. J. Reprod. Fertil. 48, 217–218.
The sensitivity of the ovulation rate of Finnish Landrace and Blackface ewes to exogenous oestrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXht1Wntw%3D%3D&md5=90e4838f535e7cab69f8ab123b5101dbCAS | 987243PubMed |

Letelier, C., Mallo, F., Encinas, T., Ros, J. M., and Gonzalez-Bulnes, A. (2008). Glucogenic supply increases ovulation rate by modifying follicle recruitment and subsequent development of preovulatory follicles without effects on ghrelin secretion. Reproduction 136, 65–72.
Glucogenic supply increases ovulation rate by modifying follicle recruitment and subsequent development of preovulatory follicles without effects on ghrelin secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVSgu7c%3D&md5=f38e2783bebfe915e0a9b220a4568c5bCAS | 18390923PubMed |

Li, R., Norman, R. J., Armstrong, D. T., and Gilchrist, R. B. (2000). Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 63, 839–845.
Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu7g%3D&md5=8940970846168268b51cc098c8474102CAS | 10952929PubMed |

Loucks, A. B., and Thuma, J. R. (2003). Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 88, 297–311.
Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVCjug%3D%3D&md5=22df0cd29f05ff576054b306c02e164cCAS | 12519869PubMed |

Lucy, M. C. (2008). Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod. Domest. Anim. 43, 31–39.
Functional differences in the growth hormone and insulin-like growth factor axis in cattle and pigs: implications for post-partum nutrition and reproduction.Crossref | GoogleScholarGoogle Scholar | 18638098PubMed |

Lundy, T., Smith, P., O’Connell, A., Hudson, N. L., and McNatty, K. P. (1999). Populations of granulosa cells in small follicles of sheep. J. Reprod. Fertil. 115, 251–262.
Populations of granulosa cells in small follicles of sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFWkuro%3D&md5=26db52de84797b17d27e2e00bd3baf83CAS | 10434930PubMed |

Marshall, S., Bacote, V., and Traxinger, R. R. (1991). Discovery of a metabolic pathway mediating desensitisation of the glucose transport system: role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712.
| 1:CAS:528:DyaK3MXhs1WltL0%3D&md5=318c629f40bfc76335b5821079fee6b4CAS | 2002019PubMed |

Martinez-Royo, A., Jurado, J. J., Smulders, J. P., Marti, J. I., Alabart, J. L., Roche, A., Fantova, E., Bodin, L., Mulsant, P., Serrano, M., Folch, J., and Calvo, J. H. (2008). A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep. Anim. Genet. 39, 294–297.
A deletion in the bone morphogenetic protein 15 gene causes sterility and increased prolificacy in Rasa Aragonesa sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslGru7s%3D&md5=be9fc58d266d99004e837bd513dd1659CAS | 18355397PubMed |

Matsui, M., Sonntag, B., Hwang, S. S., Byerly, T., Hourvitz, A., Adashi, E. Y., Shimasaki, S., and Erickson, G. F. (2004). Pregnancy-associated plasma protein-A production in rat granulosa cells: stimulation by follicle-stimulating hormone and inhibition by the oocyte-derived bone morphogenetic protein-15. Endocrinology 145, 3686–3695.
Pregnancy-associated plasma protein-A production in rat granulosa cells: stimulation by follicle-stimulating hormone and inhibition by the oocyte-derived bone morphogenetic protein-15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlCqs78%3D&md5=9ab9a7a7492d53815cf2a527e0180f85CAS | 15087430PubMed |

Mazerbourg, S., Overgaard, M. T., Oxvig, C., Christiansen, M., Conover, C. A., Laurendeau, I., Vidaud, M., Tosser-Klopp, G., Zapf, J., and Monget, P. (2001). Pregnancy-associated plasma protein-A (PAPP-A) in ovine, bovine, porcine and equine ovarian follicles: involvement in IGF binding protein-4 proteolytic degradation and mRNA expression during follicular development. Endocrinology 142, 5243–5253.
Pregnancy-associated plasma protein-A (PAPP-A) in ovine, bovine, porcine and equine ovarian follicles: involvement in IGF binding protein-4 proteolytic degradation and mRNA expression during follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVSnu7k%3D&md5=cf95b052b6b19b349ee2fad8f4c92125CAS | 11713222PubMed |

Mazerbourg, S., Bondy, C. A., Zhou, J., and Monget, P. (2003). The insulin-like growth factor system: a key determinant role in the growth and selection of ovarian follicles? A comparative species study. Reprod. Domest. Anim. 38, 247–258.
The insulin-like growth factor system: a key determinant role in the growth and selection of ovarian follicles? A comparative species study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotF2kt7w%3D&md5=11a0f517d6be0b14d17c5ab7b008fe1bCAS | 12887564PubMed |

McNatty, K. P., Moore, L. G., Hudson, N. L., Quirke, L. D., Lawrence, S. B., Reade, K., Hanrahan, J. P., Smith, P., Groome, N. P., Laitinen, M., Ritvos, O., and Juengel, J. L. (2004). The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction 128, 379–386.
The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlGjs7Y%3D&md5=ae57efdc255f12ed3eee7c7fdf8d88b1CAS | 15454632PubMed |

McNatty, K. P., Juengel, J. L., Reader, K. L., Lun, S., Myllymaa, S., Lawrence, S. B., Western, A., Meerasahib, M. F., Mottershead, D. G., Groome, N. P., Ritvos, O., and Laitinen, M. P. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction 129, 473–480.
Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ertbw%3D&md5=d7c9623948b91937cee54d11639ef33fCAS | 15798022PubMed |

McNatty, K. P., Lawrence, S., Groome, N. P., Meerasahib, M. F., Hudson, N. L., Whiting, L., Heath, D. A., and Juengel, J. L. (2006a). Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod. Fertil. Dev. 18, 403–412.
Oocyte signalling molecules and their effects on reproduction in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtV2hurY%3D&md5=b13600c34f45b9faa813867ed6f36083CAS | 16737633PubMed |

McNatty, K. P., Hudson, N. L., Smith, P., and Juengel, J. L. (2006b). The effects of superovulating sheep with mutations in either the activin-like kinase (ALK6) or bone morphogenetic protein (BMP15) genes on ovulation rate and embryo production. J. Reprod. Dev. 52, S39–S43.

McNatty  K. P., Reader  K., Heath  D. A., and Juengel  J. L. (2007). Control of ovarian follicular development to the gonadotrophin-dependent phase: a 2006 perspective. In ‘Reproduction in Domestic Ruminants VI’. (Eds J. L. Juengel, J. F. Murray and M. F. Smith.) pp. 55–68. (Nottingham University Press: Nottingham, UK.)

McNeilly  A. S., Brooks  A. N., Baxter  G., and Webb  R. (1994). Sheep adrenal inhibin. In ‘Inhibin and Inhibin-Related Proteins. Frontiers in Endocrinology. Vol. 3’. (Eds H. G. Burger, J. K. Findlay, D. M. Robertson, D. de Kretser and F. Petraglia.) pp. 261–269. (Ares-Serono Symposia Publications: Rome.)

McNeilly, A. S., Souza, C. J. H., Baird, D. T., Swanston, I. A., McVerry, J., Crawford, J., Cranfield, M., and Lincoln, G. A. (2002). Production of inhibin A not B in rams: changes in plasma inhibin A during testis growth and regression and expression of inhibin/activin subunit mRNA and protein in the adult testis. Reproduction 123, 827–835.
Production of inhibin A not B in rams: changes in plasma inhibin A during testis growth and regression and expression of inhibin/activin subunit mRNA and protein in the adult testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCiu70%3D&md5=771b9757671ed54b9e66f601ad169731CAS | 12052237PubMed |

Mihm, M., and Evans, A. C. (2008). Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reprod. Domest. Anim. 43, 48–56.
Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women.Crossref | GoogleScholarGoogle Scholar | 18638104PubMed |

Monget, P., and Monniaux, D. (1995). Growth factors and the control of folliculogenesis. J. Reprod. Fertil. Suppl. 49, 321–333.
| 1:CAS:528:DyaK2MXmslWitbo%3D&md5=dbac6cd09b2623282999e9db2e1648bdCAS | 7542711PubMed |

Monget, P., Monniaux, D., Pisselet, C., and Durand, P. (1993). Changes in insulin-like growth factor-I (IGF-I), IGF-II, and their binding proteins during growth and atresia of ovine ovarian follicles. Endocrinology 132, 1438–1446.
Changes in insulin-like growth factor-I (IGF-I), IGF-II, and their binding proteins during growth and atresia of ovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1Kmuro%3D&md5=d50f7767e41fb2cce57bd186397ad320CAS | 7681760PubMed |

Monniaux, D., and Pisselet, C. (1992). Control of proliferation and differentiation of ovine granulosa cells by insulin-like growth factor-I and follicle-stimulating hormone in vitro. Biol. Reprod. 46, 109–119.
Control of proliferation and differentiation of ovine granulosa cells by insulin-like growth factor-I and follicle-stimulating hormone in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1WksLo%3D&md5=0e50b4a221eaa793341a7613567941beCAS | 1547308PubMed |

Monteagudo, L. V., Ponz, R., Tejedor, M. T., Lavina, A., and Sierra, I. (2009). A 17-bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated with increased prolificacy in the Rasa Aragonesa sheep breed. Anim. Reprod. Sci. 110, 139–146.
A 17-bp deletion in the bone morphogenetic protein 15 (BMP15) gene is associated with increased prolificacy in the Rasa Aragonesa sheep breed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGgsLrO&md5=81e74763079d44034da7b97bbff9b5f3CAS | 18282670PubMed |

Mulsant, P., Lecerf, F., Fabre, S., Schibler, L., Monget, P., Lanneluc, I., Pisselet, C., Riquet, J., Monniaux, D., Callebaut, I., Cribiu, E., Thimonier, J., Teyssier, J., Bodin, L., Cognié, Y., Chitour, N., and Elsen, J. M. (2001). Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes. Proc. Natl. Acad. Sci. USA 98, 5104–5109.
Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1Ons74%3D&md5=0a41523a6b6ff652de247bdf276831b4CAS |

Muñoz-Gutiérrez, M., Blache, D., Martin, G. B., and Scaramuzzi, R. J. (2004). Ovarian follicular expression of mRNA encoding the type I insulin like growth factor receptor (IGF-IR) and insulin-like growth factor binding protein 2 (IGFBP2) in anoestrous sheep after 5 days of glucose or glucosamine or supplementary feeding with lupin grain. Reproduction 128, 747–756.
Ovarian follicular expression of mRNA encoding the type I insulin like growth factor receptor (IGF-IR) and insulin-like growth factor binding protein 2 (IGFBP2) in anoestrous sheep after 5 days of glucose or glucosamine or supplementary feeding with lupin grain.Crossref | GoogleScholarGoogle Scholar | 15579592PubMed |

Muñoz-Gutiérrez, M., Finlay, P., Adam, C. L., Wax, G., Campbell, B. K., Kendall, N. R., Khalid, M., Forsberg, M., and Scaramuzzi, R. J. (2005). The effect of leptin on folliculogenesis and the follicular expression of mRNA encoding aromatase, IGF-IR, IGFBP-2, IGFBP-4, IGFBP-5, leptin receptor and leptin in ewes. Reproduction 130, 869–881.
The effect of leptin on folliculogenesis and the follicular expression of mRNA encoding aromatase, IGF-IR, IGFBP-2, IGFBP-4, IGFBP-5, leptin receptor and leptin in ewes.Crossref | GoogleScholarGoogle Scholar | 16322546PubMed |

Murphy, M. G., Enright, W. J., Crowe, M. A., McConnell, K., Spicer, L. J., Boland, M. P., and Roche, J. F. (1991). Effect of dietary intake on pattern of growth of dominant follicles during the oestrous cycle in beef heifers. J. Reprod. Fertil. 92, 333–338.
Effect of dietary intake on pattern of growth of dominant follicles during the oestrous cycle in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsFCqurc%3D&md5=c74ab064b522c0f3eee5354a15dffc8aCAS | 1886091PubMed |

Neganova, I., Al-Qassab, H., Heffron, H., Selman, C., Choudhury, A. I., Lingard, S. J., Diakonov, I., Patterson, M., Ghatei, M., Bloom, S. R., Franks, S., Huhtaniemi, I., Hardy, K., and Withers, D. J. (2007). Role of central nervous system and ovarian insulin receptor substrate 2 signalling in female reproductive function in the mouse. Biol. Reprod. 76, 1045–1053.
Role of central nervous system and ovarian insulin receptor substrate 2 signalling in female reproductive function in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFGms7k%3D&md5=3bec65a3e723600508dc8e718f0bb455CAS | 17329594PubMed |

Nicol, L., Bishop, S. C., Pong-Wong, R., Bendixen, C., Lars-Erik Holm, L.-E., Rhind, S. M., and McNeilly, A. S. (2009). Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction 138, 921–933.
Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKlur%2FP&md5=c70589fcfc0ae8b74b6fe8c8dd9dbb1dCAS | 19713444PubMed |

Nishimoto, H., Matsutani, R., Yamamoto, S., Takahashi, T., Hayashi, K. G., Miyamoto, A., Hamano, S., and Tetsuka, M. (2006). Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum. J. Endocrinol. 188, 111–119.
Gene expression of glucose transporter (GLUT) 1, 3 and 4 in bovine follicle and corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCisL8%3D&md5=89b8f683e33734dc0fc58e91ef1ce1efCAS | 16394180PubMed |

Peters, H., Byskov, A. G., Himelstein-Braw, R., and Faber, M. (1975). Follicular growth: the basic event in the mouse and human ovary. J. Reprod. Fertil. 45, 559–566.
Follicular growth: the basic event in the mouse and human ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFCjtA%3D%3D&md5=7f05e922f9773e959790dd456eaaf014CAS | 128630PubMed |

Picton, H. M., and McNeilly, A. S. (1991). Evidence to support a follicle-stimulating hormone threshold theory for follicle selection in ewes chronically treated with gonadotrophin-releasing hormone agonist. J. Reprod. Fertil. 93, 43–51.
Evidence to support a follicle-stimulating hormone threshold theory for follicle selection in ewes chronically treated with gonadotrophin-releasing hormone agonist.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVygtbk%3D&md5=1e5a695083ec1a82b94342c6d8708418CAS | 1920297PubMed |

Pierson, R. A., and Ginther, O. J. (1984). Ultrasonography of the bovine ovary. Theriogenology 21, 495–504.
Ultrasonography of the bovine ovary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvVKksw%3D%3D&md5=11e1b1aad9530137a62240d2b98530b0CAS | 16725899PubMed |

Pisani, L. F., Antonini, S., Pocar, P., Ferrari, S., Brevini, T. A., Rhind, S. M., and Gandolfi, F. (2008). Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells. Reproduction 136, 303–312.
Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtLzE&md5=bb468a51d1551b3de4a89a7857ab1125CAS | 18515315PubMed |

Poretsky, L., Cataldo, N. A., Rosenwaks, Z., and Giudice, L. C. (1999). The insulin-related ovarian regulatory system in health and disease. Endocr. Rev. 20, 535–582.
The insulin-related ovarian regulatory system in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVOnsb0%3D&md5=112c800fa0003b2c76aee9b5c84dabe9CAS | 10453357PubMed |

Reddy, P., Liu, L., Adhikari, D., Jagarlamudi, K., Rajareddy, S., Shen, Y., Du, C., Tang, W., Hamalainen, T., Peng, S. L., Lan, Z. J., Cooney, A. J., Huhtaniemi, I., and Liu, K. (2008). Oocyte-specific deletion of PTEN causes premature activation of the primordial follicle pool. Science 319, 611–613.
Oocyte-specific deletion of PTEN causes premature activation of the primordial follicle pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Knt78%3D&md5=9879699403a9fff81985dbeddfa61a39CAS | 18239123PubMed |

Resnick, C. E., Fielder, P. J., Rosenfeld, R. G., and Adashi, E. Y. (1998). Characterization and hormonal regulation of a rat ovarian insulin-like growth factor binding protein-5 endopeptidase: an FSH-inducible granulosa cell-derived metalloprotease. Endocrinology 139, 1249–1257.
Characterization and hormonal regulation of a rat ovarian insulin-like growth factor binding protein-5 endopeptidase: an FSH-inducible granulosa cell-derived metalloprotease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlejtbY%3D&md5=f09759bdb74a47fe0defe0d053fe40deCAS | 9492060PubMed |

Rhind, S. M., and Schanbacher, B. D. (1991). Ovarian follicle populations and ovulation rates of Finnish Landrace cross ewes in different nutritional states and associated profiles of gonadotrophins, inhibin, growth hormone (GH) and insulin-like growth factor-I. Domest. Anim. Endocrinol. 8, 281–291.
Ovarian follicle populations and ovulation rates of Finnish Landrace cross ewes in different nutritional states and associated profiles of gonadotrophins, inhibin, growth hormone (GH) and insulin-like growth factor-I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFSrt7o%3D&md5=a29308f56d1a24ab89d57116a280d957CAS | 1906390PubMed |

Rhind, S. M., Martin, G. B., McMillen, S., Tsonis, C. G., and McNeilly, A. S. (1989a). Effect of level of food intake of ewes on the secretion of LH and FSH and on the pituitary response to gonadotrophin-releasing hormone in ovariectomised ewes. J. Endocrinol. 121, 325–330.
Effect of level of food intake of ewes on the secretion of LH and FSH and on the pituitary response to gonadotrophin-releasing hormone in ovariectomised ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFWnsbk%3D&md5=a3a9e9c3190dcd19f5c8cd0d2c083236CAS | 2502595PubMed |

Rhind, S. M., McMillen, S., McKelvey, W. A., Rodriguez-Herrejon, F. F., and McNeilly, A. S. (1989b). Effect of the body condition of ewes on the secretion of LH and FSH and the pituitary response to gonadotrophin-releasing hormone. J. Endocrinol. 120, 497–502.
Effect of the body condition of ewes on the secretion of LH and FSH and the pituitary response to gonadotrophin-releasing hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXht1yrtbk%3D&md5=ae95d94db6eaaafb8a344031b8b7193aCAS | 2494287PubMed |

Richards, J. S., Russell, D. L., Ochsner, S., Hsieh, M., Doyle, K. H., Falender, A. E., Lo, Y. K., and Sharma, S. C. (2002). Novel signalling pathways that control ovarian follicular development, ovulation and luteinization. Recent Prog. Horm. Res. 57, 195–220.
Novel signalling pathways that control ovarian follicular development, ovulation and luteinization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1WqtL4%3D&md5=d39d3ec9e549a628a89ab3fd13837906CAS | 12017544PubMed |

Rico, C., Fabre, S., Médigue, C., di Clemente, N., Clément, F., Bontoux, M., Touzé, J. L., Dupont, M., Briant, E., Rémy, B., Beckers, J. F., and Monniaux, D. (2009). Anti-Müllerian hormone is an endocrine marker of ovarian gonadotrophin-responsive follicles and can help to predict superovulatory responses in the cow. Biol. Reprod. 80, 50–59.
Anti-Müllerian hormone is an endocrine marker of ovarian gonadotrophin-responsive follicles and can help to predict superovulatory responses in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKq&md5=65c37571ab2d37524fcd3799742d7ff3CAS | 18784351PubMed |

Rivera, G. M., and Fortune, J. E. (2001). Development of co-dominant follicles in cattle is associated with a follicle-stimulating hormone-dependent insulin-like growth factor binding protein-4 protease. Biol. Reprod. 65, 112–118.
Development of co-dominant follicles in cattle is associated with a follicle-stimulating hormone-dependent insulin-like growth factor binding protein-4 protease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtLs%3D&md5=da55c215308a9b2a9754d29aa28c5e0dCAS | 11420230PubMed |

Rivera, G. M., and Fortune, J. E. (2003). Selection of the dominant follicle and insulin-like growth factor (IGF)-binding proteins: evidence that pregnancy-associated plasma protein-A contributes to proteolysis of IGF-binding protein 5 in bovine follicular fluid. Endocrinology 144, 437–446.
Selection of the dominant follicle and insulin-like growth factor (IGF)-binding proteins: evidence that pregnancy-associated plasma protein-A contributes to proteolysis of IGF-binding protein 5 in bovine follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWlsbc%3D&md5=acb664b0a48aa3783f61c62c18656e00CAS | 12538602PubMed |

Rivera, G. M., Chandrasekher, Y. A., Evans, A. C., Giudice, L. C., and Fortune, J. E. (2001). A potential role for insulin-like growth factor binding protein-4 proteolysis in the establishment of ovarian follicular dominance in cattle. Biol. Reprod. 65, 102–111.
A potential role for insulin-like growth factor binding protein-4 proteolysis in the establishment of ovarian follicular dominance in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtLo%3D&md5=f4e2601b6e7d485de29e34524de6f4e7CAS | 11420229PubMed |

Ryan, N. K., Woodhouse, C. M., Van der Hoek, K. H., Gilchrist, R. B., Armstrong, D. T., and Norman, R. J. (2002). Expression of leptin and its receptor in the murine ovary: possible role in the regulation of oocyte maturation. Biol. Reprod. 66, 1548–1554.
Expression of leptin and its receptor in the murine ovary: possible role in the regulation of oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFWnsLg%3D&md5=ee4f3762f35fd501d42193df2ad94343CAS | 11967222PubMed |

Sawyer, H. R., Smith, P., Heath, D. A., Juengel, J. L., Wakefield, St. J., and McNatty, K. P. (2002). Formation of ovarian follicles during fetal development in sheep. Biol. Reprod. 66, 1134–1150.
Formation of ovarian follicles during fetal development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClu70%3D&md5=7e01e86b5f5f26b8d91db3930d1e89b0CAS | 11906935PubMed |

Scaramuzzi  R. J., and Campbell  B. K. (1990). Physiological regulation of ovulation rate in the ewe: a new look at an old problem. In. ‘Reproductive Physiology of Merino Sheep – Concepts and Consequences’. (Eds C. M. Oldham, G. B. Martin and I. W. Purvis.) pp. 71–84. (School of Agriculture, The University of Western Australia: Perth.)

Scaramuzzi, R. J., Adams, N. R., Baird, D. T., Campbell, B. K., Downing, J. A., Findlay, J. K., Henderson, K. M., Martin, G. B., McNatty, K. P., McNeilly, A. S., and Tsonis, C. G. (1993). A model for follicle selection and the determination of ovulation rate in the ewe. Reprod. Fertil. Dev. 5, 459–478.
A model for follicle selection and the determination of ovulation rate in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFSntr4%3D&md5=37d5ba591d77a0f74c4948ed2f156e25CAS | 8190903PubMed |

Scaramuzzi, R. J., Murray, J. F., Downing, J. A., and Campbell, B. K. (1999). The effects of exogenous growth hormone on follicular steroid secretion and ovulation rate in sheep. Domest. Anim. Endocrinol. 17, 269–277.
The effects of exogenous growth hormone on follicular steroid secretion and ovulation rate in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVWmt70%3D&md5=393065be2056a2c03b7c85a06cb3474bCAS | 10527129PubMed |

Scaramuzzi, R. J., Campbell, B. K., Downing, J. A., Kendall, N. R., Khalid, M., Muñoz-Gutiérrez, M., and Somchit, A. (2006). A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate. Reprod. Nutr. Dev. 46, 339–354.
A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOnsrzF&md5=9155c3712574418876097eba185cbdf6CAS | 16824444PubMed |

Schipper, I., Hop, W. C., and Fauser, B. C. (1998). The follicle-stimulating hormone (FSH) threshold/window concept examined by different interventions with exogenous FSH during the follicular phase of the normal menstrual cycle: duration, rather than magnitude, of FSH increase affects follicle development. J. Clin. Endocrinol. Metab. 83, 1292–1298.
The follicle-stimulating hormone (FSH) threshold/window concept examined by different interventions with exogenous FSH during the follicular phase of the normal menstrual cycle: duration, rather than magnitude, of FSH increase affects follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitlyntL8%3D&md5=c0c4c302b72e4f644a6c2f2eda51a4a8CAS | 9543158PubMed |

Shimasaki, S., Moore, R. K., Otsuka, F., and Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocr. Rev. 25, 72–101.
The bone morphogenetic protein system in mammalian reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFOmt78%3D&md5=aaebd080e5743c55c9eac8e32155039dCAS | 14769828PubMed |

Silva, C. C., Groome, N. P., and Knight, P. G. (2003). Immunohistochemical localization of inhibin/activin alpha, ßA and ßB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization. Reproduction 125, 33–42.
Immunohistochemical localization of inhibin/activin alpha, ßA and ßB subunits and follistatin in bovine oocytes during in vitro maturation and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFGls70%3D&md5=f82095312168fb89354bd7f98d649af4CAS | 12622694PubMed |

Silva, J. R., Figueiredo, J. R., and van den Hurk, R. (2009). Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology 71, 1193–1208.
Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2nur0%3D&md5=8755b6ea47804a4e30ba69d1465f78c0CAS | 19193432PubMed |

Sirard, M. A., Dufort, I., Coenen, K., Tremblay, K., Massicotte, L., and Robert, C. (2003). The use of genomics and proteomics to understand oocyte and early embryo functions in farm animals. Reproduction 61, 117–129.
| 1:CAS:528:DC%2BD3sXptFKhsLk%3D&md5=70f33665283d49757c7665b9ae33fde0CAS | 14635931PubMed |

Sirard, M. A., Richard, F., Blondin, P., and Robert, C. (2006). Contribution of the oocyte to embryo quality. Theriogenology 65, 126–136.
Contribution of the oocyte to embryo quality.Crossref | GoogleScholarGoogle Scholar | 16256189PubMed |

Sirotkin, A. V., Mlyncek, M., Kotwica, J., Makarevich, A. V., Florkovicová, I., and Hetényi, L. (2005). Leptin directly controls secretory activity of human ovarian granulosa cells: possible inter-relationship with the IGF/IGFBP system. Horm. Res. 64, 198–202.
Leptin directly controls secretory activity of human ovarian granulosa cells: possible inter-relationship with the IGF/IGFBP system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aiurjK&md5=80589bf2432f3011ca91a5317a9e16d7CAS | 16244494PubMed |

Somchit  A. (2008). The physiological regulation of folliculogenesis by the glucose-insulin system and by perturbation of the follicular negative feedback system. PhD Thesis, University of London.

Souza, C. J., Campbell, B. K., and Baird, D. T. (1997). Follicular dynamics and ovarian steroid secretion in sheep during the follicular and early luteal phases of the oestrous cycle. Biol. Reprod. 56, 483–488.
Follicular dynamics and ovarian steroid secretion in sheep during the follicular and early luteal phases of the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXos1ektQ%3D%3D&md5=903cd89985d978801028102d556d5811CAS | 9116150PubMed |

Souza, C. J., Campbell, B. K., and Baird, D. T. (1998). Follicular waves and concentrations of steroids and inhibin A in ovarian venous blood during the luteal phase of the oestrous cycle in ewes with an ovarian autotransplant. J. Endocrinol. 156, 563–572.
Follicular waves and concentrations of steroids and inhibin A in ovarian venous blood during the luteal phase of the oestrous cycle in ewes with an ovarian autotransplant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVWjsr8%3D&md5=151bd9868c8774889d482c5e53a7930dCAS | 9582513PubMed |

Souza, C. J., MacDougall, C., MacDougall, C., Campbell, B. K., McNeilly, A. S., and Baird, D. T. (2001). The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J. Endocrinol. 169, R1–R6.
The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFarur8%3D&md5=622448128d64f129866a58bef63472e3CAS | 11312159PubMed |

Spicer, L. J. (2001). Leptin: a possible metabolic signal affecting reproduction. Domest. Anim. Endocrinol. 21, 251–270.
Leptin: a possible metabolic signal affecting reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFWgu7s%3D&md5=6b17222c68bc48297df8d579baabb3c8CAS | 11872320PubMed |

Spicer, L. J., Chamberlain, C. S., and Francisco, C. C. (2000). Ovarian action of leptin: effects on insulin-like growth factor-I-stimulated function of granulosa and thecal cells. Endocrine 12, 53–59.
| 1:CAS:528:DC%2BD3cXjtlKru7g%3D&md5=dae608b0762a210c84db74be403e3545CAS | 10855691PubMed |

Sugiura, K., Pendola, F. L., and Eppig, J. J. (2005). Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev. Biol. 279, 20–30.
Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlemtb4%3D&md5=91c4048154f95d618c0b2b92edae52e0CAS | 15708555PubMed |

Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFeju7k%3D&md5=719ea9ec05ca9d59be04f176a32a29b9CAS | 17553902PubMed |

Sutton, M. L., Cetica, P. D., Beconi, M. T., Kind, K. L., Gilchrist, R. B., and Thompson, J. G. (2003a). Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes. Reproduction 126, 27–34.
Influence of oocyte-secreted factors and culture duration on the metabolic activity of bovine cumulus cell complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFCntbY%3D&md5=f2aed67204cba3a40ecce6668f6d1bdaCAS | 12814344PubMed |

Sutton, M. L., Gilchrist, R. B., and Thompson, J. G. (2003b). Effects of in vivo and in vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity. Hum. Reprod. Update 9, 35–48.
Effects of in vivo and in vitro environments on the metabolism of the cumulus–oocyte complex and its influence on oocyte developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtVelt7Y%3D&md5=9080f76fcfb6569738a81cccdb07d750CAS | 12638780PubMed |

Taniguchi, C. M., Emanuelli, B., and Kahn, C. R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nature. Mol. Cell. Biol. 7, 85–96.
| 1:CAS:528:DC%2BD28XhtlWnsLw%3D&md5=fb2ea688db93813540aac8e949516742CAS |

Themmen, A. P. (2005). Anti-Müllerian hormone: its role in follicular growth initiation and survival and as an ovarian reserve marker. J. Natl. Cancer Inst. Monogr. 2005, 18–21.
Anti-Müllerian hormone: its role in follicular growth initiation and survival and as an ovarian reserve marker.Crossref | GoogleScholarGoogle Scholar |

Thibault, C. (1977). Are follicular maturation and oocyte maturation independent processes? J. Reprod. Fertil. 51, 1–15.
Are follicular maturation and oocyte maturation independent processes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlvVWhtbg%3D&md5=f4a02498630a84a4acf0a349a698e2beCAS | 335057PubMed |

Thomas, F. H., Armstrong, D. G., and Telfer, E. E. (2003). Activin promotes oocyte development in ovine preantral follicles in vitro. Reprod. Biol. Endocrinol. 1, 76–82.
Activin promotes oocyte development in ovine preantral follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 14613548PubMed |

Thompson, J. G., Lane, M., and Gilchrist, R. B. (2007). Metabolism of the bovine cumulus–oocyte complex and influence on subsequent developmental competence. Soc. Reprod. Fertil. Suppl. 64, 179–190.
| 1:CAS:528:DC%2BD1cXpvVyrs7o%3D&md5=e66a7fd62076ecefa3fb920fe2ef0d23CAS | 17491147PubMed |

Tisdall, D. J., Fidler, A. E., Smith, P., Quirke, L. D., Stent, V. C., Heath, D. A., and McNatty, K. P. (1999). Stem cell factor and c-kit gene expression and protein localization in the sheep ovary during fetal development. J. Reprod. Fertil. 116, 277–291.
Stem cell factor and c-kit gene expression and protein localization in the sheep ovary during fetal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltLc%3D&md5=4071b95da09a96bd582a5868b93d21eaCAS | 10615253PubMed |

Tosca, L., Chabrolle, C., Uzbekova, S., and Dupont, J. (2007). Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK). Biol. Reprod. 76, 368–378.
Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWhur4%3D&md5=310f4e2cb5ee1373a2eae50283deeb74CAS | 17123942PubMed |

Viñoles, C., Banchero, G., and Rubianes, E. (1999). Follicular wave pattern and progesterone concentrations in cycling ewes with high and low body condition score. Theriogenology 51, 437.
Follicular wave pattern and progesterone concentrations in cycling ewes with high and low body condition score.Crossref | GoogleScholarGoogle Scholar |

Viñoles, C., Meikle, A., and Forsberg, M. (2004). Accuracy of evaluation of ovarian structures by transrectal ultrasonography in ewes. Anim. Reprod. Sci. 80, 69–79.
Accuracy of evaluation of ovarian structures by transrectal ultrasonography in ewes.Crossref | GoogleScholarGoogle Scholar | 15036516PubMed |

Viñoles, C., Forsberg, M., Martin, G. B., Cajarville, C., Repetto, J., and Meikle, A. (2005). Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones. Reproduction 129, 299–309.
Short-term nutritional supplementation of ewes in low body condition affects follicle development due to an increase in glucose and metabolic hormones.Crossref | GoogleScholarGoogle Scholar | 15749957PubMed |

Webb  R., and Campbell  B. K. (2007). Development of the dominant follicle: mechanisms of selection and maintenance of oocyte quality. In ‘Reproduction in Domestic Ruminants VI’. (Eds J. L. Juengel, J. F. Murray and M. F. Smith.) pp. 140–163. (Nottingham University Press: Nottingham, UK.)

Webb, R., Baxter, G., McBride, D., Ritchie, M., and Springbett, A. J. (1992). Mechanism controlling ovulation rate in ewes in relation to seasonal anoestrus. J. Reprod. Fertil. 94, 143–151.
Mechanism controlling ovulation rate in ewes in relation to seasonal anoestrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVyhs74%3D&md5=c75182f125de6d9d7dfb302e153cda16CAS | 1552476PubMed |

Webb, R., Garnsworthy, P. C., Gong, J. G., and Armstrong, D. G. (2004). Control of follicular growth: local interactions and nutritional influences. J. Anim. Sci. 82, E63–E74.
| 15471816PubMed |

Williams, S. A., Blache, D., Martin, G. B., Foot, R. M., Blackberry, M. A., and Scaramuzzi, R. J. (2001). Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa theca cells. Reproduction 122, 947–956.
Effect of nutritional supplementation on quantities of glucose transporters 1 and 4 in sheep granulosa theca cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWitw%3D%3D&md5=9aca974f05414a5e2168a3ab176f260bCAS | 11732990PubMed |

Willis, D., and Franks, S. (1995). Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor. J. Clin. Endocrinol. Metab. 80, 3788–3790.
Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvFSis7s%3D&md5=0e178f71da7cbe9e3b98f05934f64c56CAS | 8530637PubMed |

Wilson, T., Wu, X. Y., Juengel, J. L., Ross, I. K., Lumsden, J. M., Lord, E. A., Dodds, K. G., Walling, G. A., McEwan, J. C., O’Connell, A. R., McNatty, K. P., and Montgomery, G. W. (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64, 1225–1235.
Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1aqsr8%3D&md5=bc02defc484bc6ac557b11369fea952cCAS | 11259271PubMed |

Yang, M. Y., and Fortune, J. E. (2008). The capacity of primordial follicles in fetal bovine ovaries to initiate growth in vitro develops during mid-gestation and is associated with meiotic arrest of oocytes. Biol. Reprod. 78, 1153–1161.
The capacity of primordial follicles in fetal bovine ovaries to initiate growth in vitro develops during mid-gestation and is associated with meiotic arrest of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVWkur8%3D&md5=023f4a22daef220b4adfdb56806a451bCAS | 18305225PubMed |

Yeo, C. X., Gilchrist, R. B., Thompson, J. G., and Lane, M. (2008). Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum. Reprod. 23, 67–73.
Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgsbzF&md5=7a56e3cf9e53953ce3bb75892fd298c7CAS | 17933754PubMed |

Zachow, R. J., and Magoffin, D. A. (1997). Direct intraovarian effects of leptin: impairment of the synergistic action of insulin-like growth factor-I on follicle-stimulating hormone-dependent oestradiol-17beta production by rat ovarian granulosa cells. Endocrinology 138, 847–850.
Direct intraovarian effects of leptin: impairment of the synergistic action of insulin-like growth factor-I on follicle-stimulating hormone-dependent oestradiol-17beta production by rat ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVKiug%3D%3D&md5=e6d1edd7aada2549cd16800b4ac8bb18CAS | 9003026PubMed |