Characterisation of ATRX, DMRT1, DMRT7 and WT1 in the platypus (Ornithorhynchus anatinus)
Enkhjargal Tsend-Ayush A , Shu Ly Lim A , Andrew J. Pask B C , Diana Demiyah Mohd Hamdan A , Marilyn B. Renfree B and Frank Grützner A DA Discipline of Genetics, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.
B Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia.
C Present address: Department of Molecular and Cellular Biology, The University of Connecticut, Storrs, CT 06269, USA.
D Corresponding author. Email: frank.grutzner@adelaide.edu.au
Reproduction, Fertility and Development 21(8) 985-991 https://doi.org/10.1071/RD09090
Submitted: 9 April 2009 Accepted: 28 August 2009 Published: 30 October 2009
Abstract
One of the most puzzling aspects of monotreme reproductive biology is how they determine sex in the absence of the SRY gene that triggers testis development in most other mammals. Although monotremes share a XX female/XY male sex chromosome system with other mammals, their sex chromosomes show homology to the chicken Z chromosome, including the DMRT1 gene, which is a dosage-dependent sex determination gene in birds. In addition, monotremes feature an extraordinary multiple sex chromosome system. However, no sex determination gene has been identified as yet on any of the five X or five Y chromosomes and there is very little knowledge about the conservation and function of other known genes in the monotreme sex determination and differentiation pathway. We have analysed the expression pattern of four evolutionarily conserved genes that are important at different stages of sexual development in therian mammals. DMRT1 is a conserved sex-determination gene that is upregulated in the male developing gonad in vertebrates, while DMRT7 is a mammal-specific spermatogenesis gene. ATRX, a chromatin remodelling protein, lies on the therian X but there is a testis-expressed Y-copy in marsupials. However, in monotremes, the ATRX orthologue is autosomal. WT1 is an evolutionarily conserved gene essential for early gonadal formation in both sexes and later in testis development. We show that these four genes in the adult platypus have the same expression pattern as in other mammals, suggesting that they have a conserved role in sexual development independent of genomic location.
Additional keywords: ovary, sex chromosomes, sex determination, sexual differentiation, testis.
Acknowledgements
We thank Drs Vivene Bardwell and David Zarkower for generously providing the DMRT1 antibody, Dan Kortschak for helpful discussions and Tasman Daish for valuable comments on the manuscript. This work was supported by grants from the Australian Research Council (DP0664267 and DP0449984); F.G. is an ARC Australian Research Fellow and E.T.-A. is an ARC Postdoctoral Fellow. D.D.M.H. is supported by a postgraduate scholarship of the Ministry of Higher Education and the University of Malaya. A.J.P. was supported by a National Health and Medical Council R.D. Wright Fellowship, and M.B.R. by an Australian Research Council Federation Fellowship.
Baumann, C. , Schmidtmann, A. , Muegge, K. , and De La Fuente, R. (2008). Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia. BMC Mol. Biol. 9, 29.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Baumann, C. , and De La Fuente, R. (2009). ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma 118, 209–222.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Deakin, J. E. , Hore, T. A. , Koina, E. , and Graves, J. A. M. (2008). The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet. 4, e1000140.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
El-Mogharbel, N. , Wakefield, M. , Deakin, J. E. , Tsend-Ayush, E. , Grutzner, F. , Alsop, A. , Ezaz, T. , and Graves, J. A. M. (2007). DMRT gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions. Genomics 89, 10–21.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Gibbons, R. J. , and Higgs, D. R. (2000). Molecular–clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 97, 204–212.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Grafodatskaya, D. , Rens, W. , Wallis, M. C. , Trifonov, V. , O’Brien, P. C. , Clarke, O. , Graves, J. A. M. , and Ferguson-Smith, M. A. (2007). Search for the sex-determining switch in monotremes: mapping WT1, SF1, LHX1, LHX2, FGF9, WNT4, RSPO1 and GATA4 in platypus. Chromosome Res. 15, 777–785.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Grützner, F. , Rens, W. , Tsend-Ayush, E. , El-Mogharbel, N. , O’Brien, P. C. , Jones, R. C. , Ferguson-Smith, M. A. , and Graves, J. A. M. (2004). In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Guan, G. , Kobayashi, T. , and Nagahama, Y. (2000). Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the Tilapia (Oreochromis niloticus). Biochem. Biophys. Res. Commun. 272, 662–666.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Hastie, N. D. (2001). Life, sex, and WT1 isoforms – three amino acids can make all the difference. Cell 106, 391–394.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Herzer, U. , Crocoll, A. , Barton, D. , Howells, N. , and Englert, C. (1999). The Wilms tumour-suppressor gene wt1 is required for development of the spleen. Curr. Biol. 9, 837–840.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kawamata, M. , and Nishimori, K. (2006). Mice deficient in Dmrt7 show infertility with spermatogenic arrest at pachytene stage. FEBS Lett. 580, 6442–6446.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kettlewell, J. R. , Raymond, C. S. , and Zarkower, D. (2000). Temperature-dependent expression of turtle Dmrt1 prior to sexual differentiation. Genesis 26, 174–178.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kim, S. , Kettlewell, J. R. , Anderson, R. C. , Bardwell, V. J. , and Zarkower, D. (2003). Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad. Gene Expr. Patterns 3, 77–82.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kim, S. , Namekawa, S. H. , Niswander, L. M. , Ward, J. O. , Lee, J. T. , Bardwell, V. J. , and Zarkower, D. (2007). A mammal-specific Doublesex homolog associates with male sex chromatin and is required for male meiosis. PLoS Genet. 3, e62.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kortschak, R. D. , Tsend-Ayush, E. , and Grutzner, F. (2009). Analysis of SINE and LINE repeat content of Y-chromosomes in the platypus, Ornithorhynchus anatinus. Reprod. Fertil. Dev. 21, 964–975.
| Crossref | GoogleScholarGoogle Scholar |
Kreidberg, J. A. , Sariola, H. , Loring, J. M. , Maeda, M. , Pelletier, J. , Housman, D. , and Jaenisch, R. (1993). WT-1 is required for early kidney development. Cell 74, 679–691.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lei, N. , Karpova, T. , Hornbaker, K. I. , Rice, D. A. , and Heckert, L. L. (2009). Distinct transcriptional mechanisms direct expression of the rat Dmrt1 promoter in Sertoli Cells and germ cells of transgenic mice. Biol Reprod. 81, 118–125.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Matsubara, K. , Tarui, H. , Toriba, M. , Yamada, K. , Nishida-Umehara, C. , Agata, K. , and Matsuda, Y. (2006). Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc. Natl Acad. Sci. USA 103, 18 190–18 195.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Miyamoto, Y. , Taniguchi, H. , Hamel, F. , Silversides, D. W. , and Viger, R. S. (2008). A GATA4/WT1 cooperation regulates transcription of genes required for mammalian sex determination and differentiation. BMC Mol. Biol. 9, 44.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Moore, A. W. , McInnes, L. , Kreidberg, J. , Hastie, N. D. , and Schedl, A. (1999). YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845–1857.
| PubMed | CAS |
Mundlos, S. , Pelletier, J. , Darveau, A. , Bachmann, M. , Winterpacht, A. , and Zabel, B. (1993). Nuclear localization of the protein encoded by the Wilms’ tumour gene WT1 in embryonic and adult tissues. Development 119, 1329–1341.
| PubMed | CAS |
Nachtigal, M. W. , Hirokawa, Y. , Enyeart-VanHouten, D. L. , Flanagan, J. N. , Hammer, G. D. , and Ingraham, H. A. (1998). Wilms’ tumour 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93, 445–454.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Nanda, I. , Shan, Z. , Schartl, M. , Burt, D. W. , and Koehler, M. , et al. (1999). 300 million years of conserved synteny between chicken Z and human Chromosome 9. Nat. Genet. 21, 258–259.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Niksic, M. , Slight, J. , Sanford, J. R. , Caceres, J. F. , and Hastie, N. D. (2004). The Wilms’ tumour protein (WT1) shuttles between nucleus and cytoplasm and is present in functional polysomes. Hum. Mol. Genet. 13, 463–471.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Niwa, H. , Sekita, Y. , Tsend-Ayush, E. , and Grützner, F. (2008). Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals. Evol. Dev. 10, 671–682.
| PubMed | CAS |
Ottolenghi, C. , Fellous, M. , Barbieri, M. , and McElreavey, K. (2002). Novel paralogy relations among human chromosomes support a link between the phylogeny of doublesex-related genes and the evolution of sex determination. Genomics 79, 333–343.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Park, J. I. , Semyonov, J. , Chang, C. L. , Yi, W. , Warren, W. , and Hsu, S. Y. (2008). Origin of INSL3-mediated testicular descent in therian mammals. Genome Res. 18, 974–985.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Pask, A. , Renfree, M. B. , and Graves, J. A. M. (2000). The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination. Proc. Natl Acad. Sci. USA 97, 13 198–13 202.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Pask, A. J. , Behringer, R. R. , and Renfree, M. B. (2003). Expression of DMRT1 in the mammalian ovary and testis – from marsupials to mice. Cytogenet. Genome Res. 101, 229–236.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Potrzebowski, L. , Vinckenbosch, N. , Marques, A. C. , Chalmel, F. , Jegou, B. , and Kaessmann, H. (2008). Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol. 6, e80.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Raymond, C. S. , Parker, E. D. , Kettlewell, J. R. , Brown, L. G. , and Page, D. C. , et al. (1999). A region of human Chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum. Mol. Genet. 8, 989–996.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Raymond, C. S. , Murphy, M. W. , O’Sullivan, M. G. , Bardwell, V. J. , and Zarkower, D. (2000). Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev. 14, 2587–2595.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Reardon, W. , Gibbons, R. J. , Winter, R. M. , and Baraitser, M. (1995). Male pseudohermaphroditism in sibs with the alpha-thalassemia/mental retardation (ATR-X) syndrome. Am. J. Med. Genet. 55, 285–287.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Renfree, M. B. , Pask, A. J. , and Shaw, G. (2006). Sexual development of a model marsupial male. Aust. J. Zool. 54, 151–158.
| Crossref | GoogleScholarGoogle Scholar |
Rens, W. , Grützner, F. , O’Brien, P. C. , Fairclough, H. , Graves, J. A. M. , and Ferguson-Smith, M. A. (2004). Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc. Natl Acad. Sci. USA 101, 16 257–16 261.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Shimamura, R. , Fraizer, G. C. , Trapman, J. , Lau Yf, C. , and Saunders, G. F. (1997). The Wilms’ tumour gene WT1 can regulate genes involved in sex determination and differentiation: SRY, Mullerian-inhibiting substance and the androgen receptor. Clin. Cancer Res. 3, 2571–2580.
| PubMed | CAS |
Smith, C. A. , McClive, P. J. , Western, P. S. , Reed, K. J. , and Sinclair, A. H. (1999). Conservation of a sex-determining gene. Nature 402, 601–602.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Smith, C. A. , Roeszler, K. N. , Ohnesorg, T. , Cummins, D. M. , Farlie, P. G. , Doran, T. J. , and Sinclair, A. H. (2009). The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461, 267–271.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Stayton, C. L. , Dabovic, B. , Gulisano, M. , Gecz, J. , and Broccoli, V. , et al. (1994). Cloning and characterization of a new human Xq13 gene, encoding a putative helicase. Hum. Mol. Genet. 3, 1957–1964.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tsend-Ayush, E. , Dodge, N. , Mohr, J. , Casey, A. , Himmelbauer, H. , Kremitzki, C. L. , Schatzkamer, K. , Graves, T. , Warren, W. C. , and Grützner, F. (2009). Higher-order genome organization in platypus and chicken sperm and repositioning of sex chromosomes during mammalian evolution. Chromosoma 118, 53–69.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Veith, A. M. , Klattig, J. , Dettai, A. , Schmidt, C. , Englert, C. , and Volff, J. N. (2006). Male-biased expression of X-chromosomal DM domain-less Dmrt8 genes in the mouse. Genomics 88, 185–195.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Veyrunes, F. , Waters, P. D. , Miethke, P. , Rens, W. , and McMillan, D. , et al. (2008). Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965–973.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wallis, M. C. , Waters, P. D. , Delbridge, M. L. , Kirby, P. J. , Pask, A. J. , Grützner, F. , Rens, W. , Ferguson-Smith, M. A. , and Graves, J. A. M. (2007). Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chromosome Res. 15, 949–959.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Waters, P. D. , Delbridge, M. L. , Deakin, J. E. , El-Mogharbel, N. , Kirby, P. J. , Carvalho-Silva, D. R. , and Graves, J. A. M. (2005). Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution. Chromosome Res. 13, 401–410.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |