Testicular descent, sperm maturation and capacitation. Lessons from our most distant relatives, the monotremes
Heath Ecroyd A , Brett Nixon B , Jean-Louis Dacheux C and Russell C. Jones B DA School of Biological Sciences, University of Wollongong, NSW 2522, Australia.
B Discipline of Biological Sciences, School of Life and Environmental Sciences, University of Newcastle, NSW 2308, Australia.
C UMR INRA-CNRS 6175, F-37380 Nouzilly, France.
D Corresponding author. Email: russell.jones@newcastle.edu.au
Reproduction, Fertility and Development 21(8) 992-1001 https://doi.org/10.1071/RD09081
Submitted: 31 March 2009 Accepted: 17 May 2009 Published: 30 October 2009
Abstract
The present review examines whether monotremes may help to resolve three questions relating to sperm production in mammals: why the testes descend into a scrotum in most mammals, why spermatozoa are infertile when they leave the testes and require a period of maturation in the specific milieu provided by the epididymides, and why ejaculated spermatozoa cannot immediately fertilise an ovum until they undergo capacitation within the female reproductive tract. Comparisons of monotremes with other mammals indicate that there is a need for considerable work on monotremes. It is hypothesised that testicular descent should be related to epididymal differentiation. Spermatozoa and ova from both groups share many of the proteins that are thought to be involved in gamete interaction, and although epididymal sperm maturation is significant it is probably less complex in monotremes than in other mammals. However, the monotreme epididymis is unique in forming spermatozoa into bundles of 100 with greatly enhanced motility compared with individual spermatozoa. Bundle formation involves a highly organised interaction with epididymal proteins, and the bundles persist during incubation in vitro, except in specialised medium, in which spermatozoa separate after 2–3 h incubation. It is suggested that this represents an early form of capacitation.
Additional keywords: epididymis, fertilisation.
Acknowledgements
We are indebted to Macquarie Generation, Glen Rock Station and National Parks and Wildlife Service, NSW, for providing facilities, and to The University of Newcastle Research Grant Committee for financial support.
Aitken, R. J. , Nixon, B. , Lin, M. , Koppers, A. J. , Lee, Y. H. , and Baker, M. A. (2007). Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J. Androl. 9, 554–564.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Bedford, J. M. (1978). Influence of abdominal temperature on epididymal function in the rat and rabbit. Am. J. Anat. 152, 509–521.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Bedford, J. M. , and Calvin, H. I. (1974a). Changes in –S–S– linked structures of the sperm tail during epididymal maturation, with comparative observations in sub-mammalian species. J. Exp. Zool. 187, 181–203.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Chang, M. C. (1951). Fertilizing capacity of spermatozoa deposited in the Fallopian tubes. Nature 168, 697–698.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Gunawardana, V. K. , and Scott, M. G. (1977). Ultrastructural studies on the differentiation of spermatids in the domestic fowl. J. Anat. 124, 741–755.
| PubMed | CAS |
Jones, R. C. , Djakiew, D. , and Dacheux, J. L. (2004). Adaptations of the echidna (Tachyglossus aculateus) for sperm production, particularly in an arid environment. Aust. Mammal. 26, 199–204.
| Crossref | GoogleScholarGoogle Scholar |
Nicander, L. , and Glover, T. D. (1973). Regional histology and fine structure of the epididymal duct in the golden hamster. J. Anat. 114, 347–364.
| PubMed | CAS |
Smith, J. , Paton, I. R. , Hughes, D. C. , and Burt, D. W. (2005). Isolation and mapping the chicken zona pellucida genes: an insight into the evolution of orthologous genes in different species. Mol. Reprod. Dev. 70, 133–145.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Sonnenberg-Riethmacher, E. , Walter, B. , Riethmacher, D. , Godecke, S. , and Birchmeier, C. (1996). The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 10, 1184–1193.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Spargo, S. C. , and Hope, R. M. (2003). Evolution and nomenclature of the zona pellucida gene family. Biol. Reprod. 68, 358–362.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Thomas, T. S. , Reynolds, A. B. , and Oliphant, G. (1984). Evaluation of the site of synthesis of rabbit sperm acrosome stabilizing factor using immunocytochemical and metabolic labelling techniques. Biol. Reprod. 30, 693–705.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tuck, R. R. , Setchell, B. P. , Waites, G. M. H. , and Young, J. A. (1970). The composition of fluid collected by micropuncture and catheterization from the seminiferous tubules and rete testis of rats. Pflugers Arch. 318, 225–243.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Tung, K. S. K. , Okada, A. , and Yanagimachi, R. (1980). Sperm autoantigens and fertilization. I. Effects of antisperm autoantibodies on rouleaux formation, viability, and acrosome reaction of guinea-pig spermatozoa. Biol. Reprod. 23, 877–886.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Turner, T. T. , Johnston, D. S. , and Jelinsky, S. A. (2006). Epididymal genomics and the search for a male contraceptive. Mol. Cell. Endocrinol. 250, 178–183.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Visconti, P. E. , and Tezon, J. G. (1989). Phorbol esters stimulate cyclic adenosine 3′,5′-monophosphate accumulation in hamster. Biol. Reprod. 40, 223–231.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Voglmayr, J. , Waites, G. , and Setchell, B. (1966). Studies on spermatozoa and fluid collected from the testis of the conscious ram. Nature 210, 861–863.
| Crossref | GoogleScholarGoogle Scholar | CAS |
Wagenfeld, A. , Yeung, C. H. , Lehnert, W. , Neischlag, E. , and Cooper, T. G. (2002). Lack of glutamate transporter EAAC1 in the epididymis of infertile c-ros receptor tyrosine-kinase deficient mice. J. Androl. 23, 772–782.
| PubMed | CAS |
Ward, C. R. , and Storey, B. T. (1984). Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev. Biol. 104, 287–296.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Warren, W. C. , Hillier, L. W. , Graves, J. A. M. , Birney, E. , and Ponting, C. P. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wassarman, P. M. , Jovine, L. , and Litscher, E. S. (2004). Mouse zona pellucida genes and glycoproteins. Cytogenet. Genome Res. 105, 228–234.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Werdelin, L. , and Nilsonne, A. (1999). The evolution of the scrotum and testicular descent in mammals: a phylogenetic view. J. Theor. Biol. 196, 61–72.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
White, W. E. (1932). The effect of hypophysectomy on the survival of spermatozoa in the male rat. Anat. Rec. 54, 253–273.
| Crossref | GoogleScholarGoogle Scholar |
White, I. G. , and Voglmayr, J. K. (1986). ATP-induced reactivation of ram testicular, cauda epididymal, and ejaculated spermatozoa extracted with Triton X-100. Biol. Reprod. 34, 183–193.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wilhelm, D. , and Koopman, P. (2006). The makings of maleness: towards an integrated view of male sexual development. Nat. Rev. Genet. 7, 620–631.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Winer, M. A. , Wadewitz, A. G. , and Wolgemuth, D. J. (1993). Members of the raf gene family exhibit segment-specific patterns of expression in mouse. Mol. Reprod. Dev. 35, 16–23.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Yanagimachi, R. (1970). In vitro capacitation of golden hamster spermatozoa by homologous and heterologous blood sera. Biol. Reprod. 3, 147–153.
| PubMed | CAS |
Zimmermann, S. , Steding, G. , Emmen, J. M. , Brinkmann, O. , Nayernia, K. , Holstein, A. F. , Engel, W. , and Adham, I. M. (1999). Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol. Endocrinol. 13, 681–691.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |