Porcine nuclear transfer using somatic donor cells altered to express male germ cell function
Sangho Roh A C , Hye-Yeon Choi B , Sang Kyu Park A , Cheolhee Won A , Bong-Woo Kim B , Jung-Hyun Kim B , Hoin Kang A , Eung-Ryoung Lee B and Ssang-Goo Cho B CA Embryo Biotechnology Laboratory, Dental Research Institute and CLS21, Seoul National University School of Dentistry, Seoul 110-749, Korea.
B Department of Animal Biotechnology (BK21) and RCTCP (CNU), Konkuk University, Seoul 143-701, Korea.
C Corresponding authors. Email: sangho@snu.ac.kr; ssangoo@konkuk.ac.kr
Reproduction, Fertility and Development 21(7) 882-891 https://doi.org/10.1071/RD09063
Submitted: 18 March 2009 Accepted: 17 May 2009 Published: 27 July 2009
Abstract
Recent studies reported that the direct transformation of one differentiated somatic cell type into another is possible. In the present study, we were able to modulate the cell fate of somatic cells to take on male germ cell function by introducing cell extracts derived from porcine testis tissue. Fibroblasts were treated with streptolysin O, which reversibly permeabilises the plasma membrane, and incubated with testis extracts. Our results showed that the testis extracts (TE) could activate expression of male germ cell-specific genes, implying that TE can provide regulatory components required for altering the cell fate of fibroblasts. Male germ cell function was sustained for more than 10 days after the introduction of TE. In addition, a single TE-treated cell was injected directly into the cytoplasm of in vitro-matured porcine oocytes. The rate of blastocyst formation was significantly higher in the TE-treated nuclear donor cell group than in the control cell group. The expression level of Nanog, Sox9 and Eomes was drastically increased when altered cells were used as donor nuclei. Our results suggest that TE can be used to alter the cell fate of fibroblasts to express male germ cell function and improve the developmental efficiency of the nuclear transfer porcine embryos.
Additional keywords: reprogramming, testis extracts.
Acknowledgements
We thank Dr H. K. Kim (Korea University) for kindly providing the stable transformed porcine cell line, V6 cells. This work was supported by the grant of ARPC (Grant no. 204117–03–3-CG000 for S. Roh and S.-G. Cho) in Korea and was also supported by the grants of KOSEF (ERC-R11–2002–100–05002–0 for S.-G. Cho and M10641000001–06N4100–00110 for S. Roh) in Korea.
Adham, I. M. , Kremling, H. , Nieter, S. , Zimmermann, S. , Hummel, M. , Schroeter, U. , and Engel, W. (1996). The structures of the bovine and porcine proacrosin genes and their conservation among mammals. Biol. Chem. Hoppe Seyler 377(4), 261–265.
| PubMed |
Betthauser, J. , Forsberg, E. , Augenstein, M. , Childs, L. , and Eilertsen, K. , et al. (2000). Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–1059.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bondioli, K. , Ramsoondar, J. , Williams, B. , Costa, C. , and Fodor, W. (2001). Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar. Mol. Reprod. Dev. 60, 189–195.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Boquest, A. C. , Grupen, C. G. , Harrison, S. J. , McIlfatrick, S. M. , Ashman, R. J. , d’Apice, A. J. , and Nottle, M. B. (2002). Production of cloned pigs from cultured fetal fibroblast cells. Biol. Reprod. 66, 1283–1287.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Brankin, V. , Mitchell, M. R. , Webb, B. , and Hunter, M. G. (2003). Paracrine effects of oocyte secreted factors and stem cell factor on porcine granulosa and theca cells in vitro. Reprod. Biol. Endocrinol. 1, 55.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chen, K. , Knorr, C. , Moser, G. , Gatphayak, K. , and Brenig, B. (2004). Molecular characterization of the porcine testis-specific phosphoglycerate kinase 2 (PGK2) gene and its association with male fertility. Mamm. Genome 15(12), 996–1006.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Collas, P. (2003). Nuclear reprogramming in cell-free extracts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1389–1395.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Collas, P. , and Gammelsaeter, R. (2007). Novel approaches to epigenetic reprogramming of somatic cells. Cloning Stem Cells 9, 26–32.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Collas, P. , and Hakelien, A. M. (2003). Teaching cells new tricks. Trends Biotechnol. 21, 354–361.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dadoune, J. P. (2003). Expression of mammalian spermatozoal nucleoproteins. Microsc. Res. Tech. 61, 56–75.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Frehlick, L. J. , Eirin-Lopez, J. M. , Jeffery, E. D. , Hunt, D. F. , and Ausio, J. (2006). The characterization of amphibian nucleoplasmins yields new insight into their role in sperm chromatin remodelling. BMC Genomics 7, 99.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fuentes-Mascorro, G. , Serrano, H. , and Rosado, A. (2000a). Sperm chromatin. Arch. Androl. 45, 215–225.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fuentes-Mascorro, G. , Vergara-Onofre, M. , Mercado, E. , Hernandez-Perez, O. , and Rosado, A. (2000b). Participation of DNA structure on sperm chromatin organization. Arch. Androl. 45, 61–71.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fujimura, T. , Kurome, M. , Murakami, H. , Takahagi, Y. , and Matsunami, K. , et al. (2004). Cloning of the transgenic pigs expressing human decay accelerating factor and N-acetylglucosaminyltransferase III. Cloning Stem Cells 6, 294–301.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gaustad, K. G. , Boquest, A. C. , Anderson, B. E. , Gerdes, A. M. , and Collas, P. (2004). Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem. Biophys. Res. Commun. 314, 420–427.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gilmont, R. R. , Coulter, G. H. , Sylvester, S. R. , and Griswold, M. D. (1990). Synthesis of transferrin and transferrin mRNA in bovine Sertoli cells in culture and in vivo: sequence of partial cDNA clone for bovine transferrin. Biol. Reprod. 43, 139–150.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Grimm, D. R. , Colter, M. B. , Braunschweig, M. , Alexander, L. J. , Neame, P. J. , and Kim, H. K. W. (2001). Porcine factor V: cDNA cloning, gene mapping, three-dimensional protein modelling of membrane binding sites and comparative anatomy of domains. Cell. Mol. Life Sci. 58, 148–159.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Håkelien, A. M. , and Collas, P. (2002). Novel approaches to trans-differentiation. Cloning Stem Cells 4, 379–387.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Håkelien, A. M. , Gaustad, K. G. , and Collas, P. (2004). Transient alteration of cell fate using a nuclear and cytoplasmic extract of an insulinoma cell line. Biochem. Biophys. Res. Commun. 316, 834–841.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Håkelien, A. M. , Gaustad, K. G. , Taranger, C. K. , Skalhegg, B. S. , Kuntziger, T. , and Collas, P. (2005). Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression. Exp. Cell Res. 309, 32–47.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Hiiragi, T. , and Solter, D. (2005). Reprogramming is essential in nuclear transfer. Mol. Reprod. Dev. 70, 417–421.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jouneau, A. , and Renard, J. P. (2003). Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13, 486–491.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kirchhof, N. , Carnwath, J. W. , Lemme, E. , Anastassiadis, K. , Scholer, H. , and Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63, 1698–1705.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kumar, B. M. , Jin, H. F. , Kim, J. G. , Ock, S. A. , Hong, Y. , Balasubramanian, S. , Choe, S. Y. , and Rho, G. J. (2007). Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells. Dev. Dyn. 236, 435–446.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lai, Y. S. , John, J. A. , Guo, I. C. , Chen, S. C. , Fang, K. , and Chang, C. Y. (2002). In vitro efficiency of intra- and extracellular immunization with mouse anti-YGNNV antibody against yellow grouper nervous necrosis virus. Vaccine 20, 3221–3229.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
McLay, D. W. , and Clarke, H. J. (2003). Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125, 625–633.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Morgan, H. D. , Santos, F. , Green, K. , Dean, W. , and Reik, W. (2005). Epigenetic reprogramming in mammals. Hum. Mol. Genet 14, R47–R58.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Niwa, H. , Miyazaki, J. , and Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Onishi, A. , Iwamoto, M. , Akita, T. , Mikawa, S. , Takeda, K. , Awata, T. , Hanada, H. , and Perry, A. C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Phelps, C. J. , Koike, C. , Vaught, T. D. , Boone, J. , and Wells, K. D. , et al. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pilon, N. , Behdjani, R. , Daneau, I. , Lussier, J. G. , and Silversides, D. W. (1998). Porcine steroidogenic factor-1 gene (pSF-1) expression and analysis of embryonic pig gonads during sexual differentiation. Endocrinology 139(9), 3803–3812.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Prather, R. S. , Sims, M. M. , and First, N. L. (1989). Nuclear transplantation in early pig embryos. Biol. Reprod. 41, 414–418.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Tada, M. , Tada, T. , Lefebvre, L. , Barton, S. C. , and Surani, M. A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Takahagi, Y. , Fujimura, T. , Miyagawa, S. , Nagashima, H. , Shigehisa, T. , Shirakura, R. , and Murakami, H. (2005). Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol. Reprod. Dev. 71, 331–338.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Taranger, C. K. , Noer, A. , Sørensen, A. L. , Håkelien, A.-M. , Boquest, A. C. , and Collas, P. (2005). Induction of de-differentiation, genome-wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol. Biol. Cell 16, 5719–5735.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wade, P. A. , and Kikyo, N. (2002). Chromatin remodelling in nuclear cloning. Eur. J. Biochem. 269, 2284–2287.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Walev, I. , Bhakdi, S. C. , Hofmann, F. , Djonder, N. , Valeva, A. , Aktories, K. , and Bhakdi, S. (2001). Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl. Acad. Sci. USA 98, 3185–3190.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Won, C. , Park, S. K. , Cho, S. G. , Min, B. M. , and Roh, S. (2008). Kinetin enhances in vitro development of parthenogenetic and nuclear transfer porcine embryos. Mol. Reprod. Dev. 75, 1701–1709.
| Crossref | GoogleScholarGoogle Scholar | PubMed |