Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Nuclear transfer and oocyte cryopreservation

Ching-Chien Chang A B , Li-Ying Sung B , Tomokazu Amano B , X. Cindy Tian B , Xiangzhong Yang B and Zsolt Peter Nagy A C
+ Author Affiliations
- Author Affiliations

A Reproductive Biology Associates, 1150 Lake Hearn Dr, Suite 400, Atlanta, GA 30342, USA.

B Department of Animal Science/Center for Regenerative Biology, University of Connecticut, 1392 Storrs Rd, Storrs, CT 06269, USA.

C Corresponding author. Email: peter.nagy@rba-online.com

Reproduction, Fertility and Development 21(1) 37-44 https://doi.org/10.1071/RD08218
Published: 9 December 2008

Abstract

Somatic cells can be reprogrammed to a totipotent state through nuclear transfer or cloning, because it has been demonstrated that the oocyte has the ability to reprogramme an adult nucleus into an embryonic state that can initiate the development of a new organism. Therapeutic cloning, whereby nuclear transfer is used to derive patient-specific embryonic stem cells, embraces an entire new opportunity for regenerative medicine. However, a key obstacle for human therapeutic cloning is that the source of fresh human oocytes is extremely limited. In the present review, we propose prospective sources of human oocytes by using oocyte cryopreservation, such as an oocyte bank and immature oocytes. We also address some potential issues associated with nuclear transfer when using cryopreserved oocytes. In the future, if the efficacy and efficiency of cryopreserved oocytes are comparable to those of fresh oocytes in human therapeutic cloning, the use of cryopreserved oocytes would be invaluable and generate a great impact to regenerative medicine.

Additional keywords: cloning, stem cell.


Acknowledgement

The authors thank Ms Jaclyn Friedman for her help in revising the manuscript.


References

Antinori, M. , Licata, E. , Dani, G. , Cerusico, F. , Versaci, C. , and Antinori, S. (2007). Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod. Biomed. Online 14, 72–79.
PubMed | Chang C. C., Shapiro D. B., Bernal D. P., Wright G., Kort H. I., and Nagy Z. P. (2008a). Human oocyte vitrification: in vivo and in vitro maturation outcomes. Reprod. Biomed. Online, in press.

Chang C. C., Sung L. Y., Amano T., Amano M., Lin C. J., Nagy Z. P., Xu J., Tian X. C., and Yang X. (2008b). Derivation of embryonic stem cells by nuclear transfer using cryopreserved eggs. Biol. Reprod. 69 (Society for the Study of Reproduction 41st Annual Meeting Special Issue).

Chen, C. (1986). Pregnancy after human oocyte cryopreservation. Lancet 327, 884–886.
Crossref | GoogleScholarGoogle Scholar | PubMed | Gomes C. M., Silva C. A., Acevedo N., Baracat E., Serafini P., and Smith G. D. (2008). Influence of vitrification on mouse metaphase II oocyte spindle dynamics and chromatin alignment. Fertil. Steril., in press.

Gurdon, J. B. , and Byrne, J. A. (2003). The first half-century of nuclear transplantation. Proc. Natl Acad. Sci. USA 100, 8048–8052.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Nagy Z. P., Chang C. C., Shapiro D. B., Bernal D. P., Elsner C. W., Mitchell-Leef D., Toledo A. A., and Kort H. I. (2008). Clinical evaluation of the efficiency of an oocyte donation program using egg cryo-banking. Fertil. Steril., in press.

Oktay, K. , Cil, A. P. , and Bang, H. (2006). Efficiency of oocyte cryopreservation: a meta-analysis. Fertil. Steril. 86, 70–80.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Plancha, C. E. , Sanfins, A. , Rodrigues, P. , and Albertini, D. (2005). Cell polarity during folliculogenesis and oogenesis. Reprod. Biomed. Online 10, 478–484.
PubMed |

Porcu, E. , Fabbri, R. , Ciotti, P. M. , Petracchi, S. , Seracchioli, R. , and Flamigni, C. (1999). Ongoing pregnancy after intracytoplasmic sperm injection of epididymal spermatozoa into cryopreserved human oocytes. J. Assist. Reprod. Genet. 16, 283–285.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Racowsky, C. , and Kaufman, M. L. (1992). Nuclear degeneration and meiotic aberrations observed in human oocytes matured in vitro: analysis by light microscopy. Fertil. Steril. 58, 750–755.
PubMed |  CAS |

Rall, W. F. , and Fahy, G. M. (1985). Ice-free cryopreservation of mouse embryos at –196 degrees C by vitrification. Nature 313, 573–575.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rideout, W. M. , Hochedlinger, K. , Kyba, M. , Daley, G. Q. , and Jaenisch, R. (2002). Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sathananthan, A. H. , Ng, S. C. , Trounson, A. O. , Bongso, A. , Ratnam, S. S. , Ho, J. , Mok, H. , and Lee, M. N. (1988). The effects of ultrarapid freezing on meiotic and mitotic spindles of mouse oocytes and embryos. Gamete Res. 21, 385–401.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Selman, H. , Angelini, A. , Barnocchi, N. , Brusco, G. F. , Pacchiarotti, A. , and Aragona, C. (2006). Ongoing pregnancies after vitrification of human oocytes using a combined solution of ethylene glycol and dimethyl sulfoxide. Fertil. Steril. 86, 997–1000.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shaw, J. M. , and Trounson, A. O. (1989). Parthenogenetic activation of unfertilized mouse oocytes by exposure to 1,2-propanediol is influenced by temperature, oocyte age, and cumulus removal. Gamete Res. 24, 269–279.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Smith, G. D. (2001). In vitro maturation of oocytes. Curr. Womens Health Rep. 1, 143–151.
PubMed |  CAS |

Smitz, J. E. , and Cortvrindt, R. G. (2004). In vitro growth and maturation of oocytes in human and non-human primates. Gynecol. Obstet. Invest. 57, 18–21.
PubMed |  CAS |

Somfai, T. , Ozawa, M. , Noguchi, J. , Kaneko, H. , Kuriani Karja, N. W. , Farhudin, M. , Dinnyés, A. , Nagai, T. , and Kikuchi, K. (2007). Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Somfai, T. , Kashiwazaki, N. , Ozawa, M. , Nakai, M. , Maedomari, N. , Noguchi, J. , Kaneko, H. , Nagai, T. , and Kikuchi, K. (2008). Effect of centrifugation treatment before vitrification on the viability of porcine mature oocytes and zygotes produced in vitro. J. Reprod. Dev. 54, 149–155.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stachecki, J. J. , Cohen, J. , Garrisi, J. , Munne, S. , Burgess, C. , and Willadsen, S. M. (2006). Cryopreservation of unfertilized human oocytes. Reprod. Biomed. Online 13, 222–227.
PubMed |

Stojkovic, M. , Stojkovic, P. , Leary, C. , Hall, V. J. , Armstrong, L. , Herbert, M. , Nesbitt, M. , Lako, M. , and Murdoch, A. (2005). Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reprod. Biomed. Online 11, 226–231.
PubMed |

Thomson, J. A. , Itskovitz-Eldor, J. , Shapiro, S. S. , Waknitz, M. A. , Swiergiel, J. J. , Marshall, V. S. , and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tucker, M. J. , Morton, P. C. , Wright, G. , Sweitzer, C. L. , and Massey, J. B. (1998). Clinical application of human egg cryopreservation. Hum. Reprod. 13, 3156–3159.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vajta, G. , and Nagy, Z. P. (2006). Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod. Biomed. Online 12, 779–796.
PubMed |

Van der Elst, J. , Nerinckx, S. , and Van Steirteghem, A. C. (1992). In vitro maturation of mouse germinal vesicle-stage oocytes following cooling, exposure to cryoprotectants and ultrarapid freezing: limited effect on the morphology of the second meiotic spindle. Hum. Reprod. 7, 1440–1446.
PubMed |  CAS |

Wakayama, S. , Jakt, M. L. , Suzuki, M. , Araki, R. , and Hikichi, T. , et al. (2006). Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells 24, 2023–2033.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Wilmut, I. , Schnieke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wright, G. , Chang, C. C. , Tian, X. C. , Yang, X. , Sung, L. Y. , and Nagy, Z. P. (2007). Oocyte spindle preservation during slow-rate freezing. Hum. Reprod. 22((Suppl. 1)), i154.


Yang, B. C. , Im, G. S. , Kim, D. H. , Yang, B. S. , Oh, H. J. , Park, H. S. , Seong, H. H. , Kim, S. W. , Ka, H. H. , and Lee, C. K. (2008). Development of vitrified–thawed bovine oocytes after in vitro fertilization and somatic cell nuclear transfer. Anim. Reprod. Sci. 103, 25–37.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yoon, T. K. , Kim, T. J. , Park, S. E. , Hong, S. W. , Ko, J. J. , Chung, H. M. , and Cha, K. Y. (2003). Live births after vitrification of oocytes in a stimulated in vitro fertilization–embryo transfer program. Fertil. Steril. 79, 1323–1326.
Crossref | GoogleScholarGoogle Scholar | PubMed |