Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Nuclear transfer using clonal lines of porcine fetal fibroblasts with different sizes and population doubling rates

H. T. Cheong
+ Author Affiliations
- Author Affiliations

School of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea. Email: htcheong@kangwon.ac.kr

Reproduction, Fertility and Development 20(8) 871-874 https://doi.org/10.1071/RD08143
Submitted: 23 June 2008  Accepted: 27 July 2008   Published: 10 October 2008

Abstract

The aim of the present study was to examine the development of pig embryos produced by somatic cell nuclear transfer (NT) using the clonal lines of fetal fibroblasts with different population doublings (PD) per day and sizes. Clonal lines were established by plating fetal fibroblasts from a Day 35 pig fetus into 96-well clusters, one cell to each well. Four clonal lines (L1–L4) were selected for NT according to their PD per day (1.1 ± 0.2 to 0.8 ± 0.2) and mean cell size (15.1 ± 2.0 to 20.1 ± 2.9). Donor cells were transferred into enucleated oocytes, fused and activated simultaneously with electrical stimuli (two pulses of 125 V mm–1 for 30 μs) and cultured for 6 days. The proportion of embryos that developed to the blastocyst stage in the L3 (19.6%) and L4 (25.3%) lines, which had a lower PD per day and larger cell size, were significantly higher (P < 0.05) than that of the L2 line (10.6%), which had a higher PD per day and the smallest cell size. The proportion of embryos developing to the blastocyst stage in the L1 line (17.3%), which had the highest PD per day and smaller cell size, was significantly lower (P < 0.05) than that of the L4 line. These results suggest that clonal lines with larger sized cell populations in mean and lower PD per day have a greater in vitro developmental potential following NT.

Additional keywords: cell size, in vitro development, pig, somatic cell nuclear transfer.


Acknowledgement

This study was supported by the Institute of Veterinary Science, Kangwon National University, Korea.


References

Arat, S. , Gibbons, J. , Rzucidlo, S. J. , Respess, D. S. , and Tumlin, M. (2002). In vitro development of bovine nuclear transfer embryos from transgenic clonal lines of adult and fetal fibroblast cells of the same genotype. Biol. Reprod. 66, 1768–1774.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Baguisi, A. , Behboodi, E. , Melican, D. T. , Pollock, J. S. , and Destrempes, M. M. , et al. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bonk, A. J. , Cheong, H. T. , Li, R. , Lai, L. , and Hao, Y. , et al. (2007). Correlation of developmental differences of nuclear transfer embryos cells to the methylation profiles of nuclear transfer donor cells in swine. Epigenetics 2, 179–186.
PubMed |

Boquest, A. C. , Day, B. N. , and Prather, R. S. (1999). Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells. Biol. Reprod. 60, 1013–1019.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Cheong, H. T. , Park, T. M. , Ikeda, K. , and Takahashi, Y. (2003). Cell cycle analysis of bovine cultured somatic cells by flow cytometry. Jpn J. Vet. Res. 51, 95–103.
PubMed |

Chesné, P. , Adenot, P. G. , Viglietta, C. , Baratte, M. , Boulanger, L. , and Renard, J.-P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 20, 366–369.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cho, J. , Bhuiyan, M. M. U. , Shin, S. , Park, E. , Jang, G. , Kang, S. , Lee, B. , and Hwang, W. (2004). Development potential of transgenic somatic cell nuclear transfer embryos according to various factors of donor cell. J. Vet. Med. Sci. 66, 1567–1573.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Denning, C. , Burl, S. , Ainslie, A. , Bracken, J. , and Dinnyes, A. , et al. (2001). Deletion of the α(1,3)galactosyltransferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat. Biotechnol. 19, 559–562.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Galli, C. , Lagutina, I. , Crotti, G. , Colleoni, S. , Turini, P. , Ponderato, N. , Duchi, R. , and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kasinathan, P. , Knott, J. G. , Moreira, P. N. , Burnside, A. S. , Jerry, D. J. , and Robl, J. M. (2001). Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol. Reprod. 64, 1487–1493.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kato, Y. , Tani, T. , Sotomaru, Y. , Kurokawa, K. , Kato, J. , Doguchi, H. , Yasue, H. , and Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282, 2095–2098.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kolber-Simonds, D. , Lai, L. , Watt, S. R. , Denaro, M. , and Arn, S. , et al. (2004). Alpha-1,3-galactosyltransferase null pigs via nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl Acad. Sci. USA 101, 7335–7340.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kühholzer, B. , Haeley, R. J. , Lai, L. , Kolber-Simonds, D. , and Prather, R. S. (2001). Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs. Biol. Reprod. 64, 1695–1698.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lai, L. , Kolber-Simonds, D. , Park, K. W. , Cheong, H. T. , and Greenstein, J. L. , et al. (2002). Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295, 1089–1092.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lee, B. C. , Kim, M. K. , Jang, G. , Oh, H. J. , and Yuda, F. , et al. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

McCreath, K. J. , Howcroft, J. , Campbell, K. H. S. , Colman, A. , Schnieke, A. E. , and Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Phelps, C. J. , Koike, C. , Vaught, T. D. , Boone, J. , and Wells, K. D. , et al. (2003). Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299, 411–414.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Polejaeva, I. A. , Chen, S. H. , Vaught, T. D. , Page, R. L. , and Mullins, J. , et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Schnieke, A. E. , Kind, A. J. , Ritchie, W. A. , Mycock, K. , Scott, A. R. , Ritchie, M. , Wilmut, I. , Colman, A. , and Campbell, K. H. S. (1997). Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Shin, T. , Kraemer, D. , Pryor, J. , Liu, L. , Rugila, J. , Howe, L. , Buck, S. , Murphy, K. , Lyons, L. , and Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wakayama, T. , Perry, A. C. F. , Zuccotti, M. , Johnson, K. R. , and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wells, D. N. , Laible, G. , Tucker, F. C. , Miller, A. L. , and Oliver, J. E. , et al. (2003). Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59, 45–59.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wilmut, I. , Schnieke, A. E. , McWhir, J. , Kind, A. J. , and Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |