Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Microinjection of mouse phospholipase Cζ complementary RNA into mare oocytes induces long-lasting intracellular calcium oscillations and embryonic development

Sylvia J. Bedford-Guaus A D , Sook-Young Yoon B , Rafael A. Fissore B , Young-Ho Choi C and Katrin Hinrichs C
+ Author Affiliations
- Author Affiliations

A Department of Clinical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA.

B Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.

C Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, USA.

D Corresponding author. Email: sjb55@cornell.edu

Reproduction, Fertility and Development 20(8) 875-883 https://doi.org/10.1071/RD08115
Submitted: 21 May 2008  Accepted: 27 July 2008   Published: 10 October 2008

Abstract

Methods presently used to activate mare oocytes for assisted reproduction technologies provide low rates of advanced embryonic development. Because phospholipase Cζ (PLCζ) is the postulated sperm-borne factor responsible for oocyte activation at fertilisation, the aim of the present study was to investigate the pattern of [Ca2+]i oscillations and developmental rates achieved by microinjection of three concentrations of mouse PLCζ complementary (c) RNA (1, 0.5 or 0.25 μg μL–1) into mare oocytes. The frequency of [Ca2+]i oscillations was no different (P > 0.05) after injection of 1, 0.5 or 0.25 μg μL–1 PLCζ cRNA (41.1 ± 5.3, 47 ± 4.0 and 55.4 ± 9.0, respectively). However, [Ca2+]i oscillations persisted longest (P < 0.05) for oocytes injected with 0.5 μg μL–1 PLCζ cRNA (570.7 ± 64.2 min). There was no significant difference in cleavage rates after injection of the three concentrations of PLCζ (P > 0.05; range 97–100%), but the proportion of oocytes reaching advanced stages of embryonic development (>64 nuclei) was significantly lower for oocytes injected with 0.25 μg μL–1 PLCζ cRNA (3%) than for those injected with 1 μg μL–1 PLCζ cRNA (15%). Based on these results, microinjection of PLCζ may prove an effective and consistent method for the parthenogenetic activation of mare oocytes for nuclear transfer and provides a physiologically relevant tool with which to study fertilisation-dependent [Ca2+]i signalling in this species.

Additional keywords: assisted reproduction, oocyte activation.


Acknowledgements

This study was funded by faculty start-up funds at Cornell University, College of Veterinary Medicine, and by the Link Equine Research Endowment Fund, Texas A&M University. The authors thank Changli He (University of Massachusetts) for assistance with the preparation of the mouse PLCζ cRNA construct and Lori McPartlin (Cornell University) and Linda Love (Texas A&M University) for assistance with the preparation of mare oocytes for experiments.


References

Ali, H. , Richardson, R. M. , Haribabu, B. , and Snyderman, R. (1999). Chemoattractant receptor cross-desensitization. J. Biol. Chem. 274, 6027–6030.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Bedford S. J., Kurokawa M., Hinrichs K., and Fissore R. A. (2002). Activation and intracellular calcium ([Ca2+]i) transients induced by microinjection of equine sperm factor into murine and equine oocytes. Theriogenology 57, 699. [Abstract]

Bedford, S. J. , Kurokawa, M. , Hinrichs, K. , and Fissore, R. A. (2003). Intracellular calcium oscillations and activation in horse oocytes injected with equine sperm extracts or sperm. Reproduction 126, 489–499.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bedford, S. J. , Kurokawa, M. , Hinrichs, K. , and Fissore, R. A. (2004). Patterns of intracellular calcium oscillations in horse oocytes fertilized by intracytoplasmic sperm injection: possible explanations for the low success of this assisted reproduction technique in the horse. Biol. Reprod. 70, 936–944.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Brind, S. , Swann, K. , and Carroll, J. (2000). Inositol 1,4,5-trisphosphate receptors are downregulated in mouse oocytes in response to sperm or adenophostin A but not to increases in intracellular Ca2+ or egg activation. Dev. Biol. 223, 251–265.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Carneiro, G. , Lorenzo, P. , Pimentel, C. , Pegoraro, L. , Bertolini, M. , Ball, B. , Anderson, G. , and Liu, I. (2001). Influence of insulin-like growth factor-1 and its interaction with gonadotropins, estradiol, and fetal calf serum on in vitro maturation and parthenogenetic development in equine oocytes. Biol. Reprod. 65, 899–905.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Carroll, J. (2001). The initiation and regulation of Ca2+ signaling at fertilization in mammals. Semin. Cell Dev. Biol. 12, 37–43.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Choi, Y. H. , Love, C. C. , Chung, Y. G. , Varner, D. D. , Westhusin, M. E. , Burghardt, R. C. , and Hinrichs, K. (2002). Production of nuclear transfer horse embryos by Piezo-driven injection of somatic cell nuclei and activation with stallion sperm cytosolic extract. Biol. Reprod. 67, 561–567.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Choi, Y. H. , Love, L. B. , Westhusin, M. E. , and Hinrichs, K. (2004). Activation of equine nuclear transfer oocytes: methods and timing of treatment in relation to nuclear remodeling. Biol. Reprod. 70, 46–53.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Choi, Y. H. , Love, C. C. , Varner, D. D. , and Hinrichs, K. (2006a). Equine blastocyst development after intracytoplasmic injection of sperm subjected to two freeze–thaw cycles. Theriogenology 65, 808–819.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Choi, Y. H. , Love, L. B. , Varner, D. D. , and Hinrichs, K. (2006b). Holding immature equine oocytes in the absence of meiotic inhibitors: effect on germinal vesicle chromatin and blastocyst development after intracytoplasmic sperm injection. Theriogenology 66, 955–963.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Cox, L. J. , Larman, M. G. , Saunders, C. M. , Hashimoto, K. , Swann, K. , and Lai, F. A. (2002). Sperm phospholipase Cζ from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124, 611–623.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Faure, J. E. , Myles, D. G. , and Primakoff, P. (1999). The frequency of calcium oscillations in mouse eggs at fertilization is modulated by the number of fused sperm. Dev. Biol. 213, 370–377.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fissore, R. A. , Dobrinsky, J. R. , Balise, J. J. , Duby, R. T. , and Robl, J. M. (1992). Patterns of intracellular Ca2+ concentration in fertilized bovine oocytes. Biol. Reprod. 47, 960–969.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fissore, R. A. , Gordo, A. C. , and Wu, H. (1998). Activation of development in mammals: is there a role for sperm cytosolic factor? Theriogenology 49, 43–52.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

FitzHarris, G. , Marangos, P. , and Carroll, J. (2003). Cell cycle-dependent regulation of structure of endoplasmic reticulum and inositol 1,4,5-trisphosphate-induced Ca2+ release in mouse oocytes and embryos. Mol. Biol. Cell 14, 288–301.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fujimoto, S. , Yoshida, N. , Fukui, T. , Amanai, M. , Isobe, T. , Itagaki, C. , Izumi, T. , and Perry, A. C. F. (2004). Mammalian phospholipase Cζ induces oocyte activation from the sperm perinuclear matrix. Dev. Biol. 274, 370–383.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Galli, C. , Lagutina, I. , Crotti, G. , Colleoni, S. , Turini, P. , Ponderato, N. , Duchi, R. , and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hinrichs, K. (2005). Update on equine ICSI and cloning. Theriogenology 64, 535–541.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hinrichs, K. , and Schmidt, A. L. (2000). Meiotic competence in horse oocytes: interactions among chromatin configuration, follicle size, cumulus morphology, and season. Biol. Reprod. 62, 1402–1408.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hinrichs, K. , Choi, Y. H. , Love, C. C. , Chung, Y. G. , and Varner, D. D. (2006). Production of horse foals via direct injection of roscovitine-treated donor cells and activation by injection of the sperm extract. Reproduction 131, 1063–1072.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Jellerette, T. , He, C. L. , Wu, H. , Parys, J. B. , and Fissore, R. A. (2000). Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev. Biol. 223, 238–250.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Jones, K. T. (2007). Intracellular calcium in the fertilization and development of mammalian eggs. Clin. Exp. Pharmacol. Physiol. 34, 1084–1089.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Jones, K. T. , and Nixon, V. L. (2000). Sperm induced Ca2+ oscillations in mouse oocytes and eggs can be mimicked by photolysis of caged inositol 1,4,5-trisphosphate: evidence to support a continuous low level production of inositol 1,4,5-trisphosphate during mammalian fertilization. Dev. Biol. 225, 1–12.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kline, D. , and Kline, J. T. (1992). Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 149, 80–89.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Knott, J. G. , Kasinathan, P. , Wu, H. , He, C. L. , Fissore, R. A. , and Robl, J. M. (2002). Porcine sperm factor supports activation and development of bovine nuclear transfer embryos. Biol. Reprod. 66, 1095–1103.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kouchi, Z. , Fukami, K. , Shikano, T. , Oda, S. , Nakamura, Y. , Takenawa, T. , and Miyazaki, S. (2004). Recombinant phospholipase Cζ has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J. Biol. Chem. 279, 10 408–10 412.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kuroda, K. , Ito, M. , Shikano, T. , Awaji, T. , Yoda, A. , Takeuchi, H. , Knoshita, K. , and Miyazaki, S. (2006). The role of the X/Y linker region and N-terminal EF-hand domain in nuclear translocation and Ca2+ oscillation-inducing activities of phopholipase Cζ, a mammalian egg-activating factor. J. Biol. Chem. 281, 27 794–27 805.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurokawa, M. , and Fissore, R. A. (2003). ICSI-generated mouse zygotes exhibit altered calcium oscillations, inositol 1,4,5-trisphosphate receptor-1 down-regulation, and embryo development. Mol. Hum. Reprod. 9, 523–533.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurokawa, M. , Sato, K.-I. , and Fissore, R. A. (2004). Mammalian fertilization: from sperm factor to phospholipase Cζ. Biol. Cell 96, 37–45.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurokawa, M. , Sato, K.-I. , Wu, H. , He, C. , Malcuit, C. , Black, S. J. , Fukami, K. , and Fissore, R. A. (2005). Functional, biochemical, and chromatographic characterization of the complete [Ca2+]i oscillation-inducing activity of porcine sperm. Dev. Biol. 285, 376–392.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurokawa, M. , Yoon, S. Y. , Alfandari, D. , Fukami, K. , Sato, K.-I. , and Fissore, R. A. (2007). Proteolytic processing of phopholipase Czeta and [Ca2+]i oscillations during mammalian fertilization. Dev. Biol. 312, 407–418.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lagutina, I. , Lazzari, G. , Duchi, R. , Colleoni, S. , Ponderato, N. , Turini, P. , Crotti, G. , and Galli, C. (2005). Somatic cell nuclear transfer in horses: effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction 130, 559–567.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lee, B. , Vermassen, E. , Yoon, S.-Y. , Vanderheyden, V. , Ito, J. , Alfandari, D. , De Smedt, H. , Parys, J. B. , and Fissore, R. A. (2006). Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway. Development 133, 4355–4365.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Li, X. , Dai, Y. , and Allen, W. R. (2004). Influence of insulin-like growth factor-1 on cytoplasmic maturation of horse oocytes in vitro and organization of the first cell cycle following nuclear transfer and parthenogenesis. Biol. Reprod. 71, 1391–1396.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Malcuit, C. , Knott, J. G. , He, C. , Wainwright, T. , Parys, J. B. , Robl, J. M. , and Fissore, R. A. (2005). Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs. Biol. Reprod. 73, 2–13.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nakada, K. , Mizuno, J. , Shiraishi, K. , Endo, K. , and Miyazaki, S. (1995). Initiation, persistence, and cessation of the series of intracellular Ca2+ responses during fertilization of bovine oocytes. J. Reprod. Dev. 41, 77–84.
Crossref | GoogleScholarGoogle Scholar | CAS |

Ozil, J. P. (1998). Role of calcium oscillations in mammalian egg activation: experimental approach. Biophys. Chem. 72, 141–152.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ozil, J. P. , and Huneau, D. (2001). Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development 128, 917–928.
PubMed |  CAS |

Rogers, N. T. , Hobson, E. , Pickering, S. , Lai, F. A. , Braude, P. , and Swann, K. (2004). Phospholipase Cζ causes Ca2+ oscillations and parthenogenetic activation of human oocytes. Reproduction 128, 697–702.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ross, P. J. , Beyhan, Z. , Iager, A. E. , Yoon, S.-Y. , Malcuit, C. , Schellander, K. , Fissore, R. A. , and Cibelli, J. B. (2008). Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta. BMC Dev. Biol. 8, 16–27.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sato, M. S. , Yoshitomo, M. , Mohri, T. , and Miyazaki, S. (1999). Spatiotemporal analysis of [Ca2+]i rises in mouse eggs after intracytoplasmic sperm injection (ICSI). Cell Calcium 26, 49–58.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Saunders, C. M. , Larman, M. G. , Parrington, J. , Cox, L. J. , Royse, J. , Blayney, L. M. , Swann, K. , and Lai, F. A. (2002). PLCζ: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544.
CAS | PubMed |

Swann, K. , Saunders, C. M. , Rogers, N. T. , and Lai, F. A. (2006). PLCζ(zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin. Cell Dev. Biol. 17, 264–273.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Taylor, C. T. , Lawrence, Y. M. , Kingsland, C. R. , Biljan, M. M. , and Cuthbertson, K. S. R. (1993). Oscillations in intracellular free calcium induced by spermatozoa in human oocytes at fertilization. Hum. Reprod. 8, 2174–2179.
PubMed |  CAS |

Tesarik, J. , Sousa, M. , and Mendoza, C. (1995). Sperm-induced calcium oscillations of human oocytes show distinct features in oocyte center and periphery. Mol. Reprod. Dev. 41, 259–263.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vanderwall, D. K. , Woods, G. L. , Aston, K. I. , Bunch, T. D. , Li, G. , Meerdo, L. N. , and White, K. L. (2004). Cloned horse pregnancies produced using adult cumulus cells. Reprod. Fertil. Dev. 16, 675–679.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wu, H. , Smyth, J. , Luzzi, V. , Fukami, K. , Takenawa, T. , Black, S. L. , Allbritton, N. L. , and Fissore, R. A. (2001). Sperm factor induces intracellular free calcium oscillations by stimulating the phosphoinositide pathway. Biol. Reprod. 64, 1338–1349.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yu, Y. , Saunders, C. M. , Lai, F. A. , and Swann, K. (2008). Preimplantation development of mouse oocytes activated by different levels of human phospholipase C zeta. Hum. Reprod. 23, 365–373.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |