Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of insulin-like growth factor-I, epidermal growth factor and cysteamine on the in vitro maturation and development of oocytes collected from 6- to 8-week-old Merino lambs

Jennifer M. Kelly A B C , David O. Kleemann A , W. M. Chis Maxwell B and Simon K. Walker A
+ Author Affiliations
- Author Affiliations

A South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, 5350, Australia.

B Faculty of Veterinary Science, The University of Sydney, Sydney, New South Wales, 2000, Australia.

C Corresponding author. Email: kelly.jen@saugov.sa.gov.au

Reproduction, Fertility and Development 20(5) 570-578 https://doi.org/10.1071/RD07220
Submitted: 9 December 2007  Accepted: 10 March 2008   Published: 28 April 2008

Abstract

To improve the viability of embryos produced in vitro from lamb oocytes, maturation medium was supplemented with insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF), cysteamine, and combinations thereof. Experiment 1 examined the effects of IGF-I supplementation and duration of oocyte maturation on nuclear maturation and embryo development while Experiments 2 and 3 examined the effects of cysteamine and EGF supplementation respectively on embryo development. In Experiment 4, embryo development was examined after maturation with various combinations of supplements. IGF-I supplementation increased cleavage rate (P < 0.05) but its effect on the rate of blastocyst production from original oocytes was variable. Supplementation with IGF-I increased (P < 0.01) the proportion of oocytes at Metaphase II (MII) after 18 h of maturation but not at later times. EGF either alone or combined with IGF-I significantly (P < 0.05) increased cleavage rates compared with other treatment groups but EGF consistently failed to improve blastocyst production rates. Cysteamine improved hatching rates but only when supplemented alone. Maturation of lamb oocytes for 22 h in medium supplemented with 100 ng mL–1 IGF-I and 100 μm cysteamine resulted in the production of 16.0 lambs per donor lamb after embryos were transferred to recipient ewes. It is concluded that EGF and, to a lesser extent, IGF-I, whilst beneficial to initial cleavage, can adversely influence subsequent embryo development. Improvements in embryo viability may more likely be obtained by addressing issues that influence fetal oocyte quality than by modifying in vitro methodology.


Acknowledgements

Thank you to Mrs Skye Rudiger who provided valuable technical assistance. The support of the staff of Leachim Breeding Centre, where the field evaluation was conducted, is appreciated. Bioniche Animal Health Australasia is thanked for kindly supplying FSH (Folltropin) used for stimulating lambs in the present study. Ms Debra Partington provided advice on the statistical analyses.


References

Abeydeera, L. R. , Wang, W. H. , Cantley, T. C. , Rieke, A. , Prather, R. S. , and Day, B. N. (1998). Presence of epidermal growth factor during in vitro maturation of pig oocytes and embryo culture can modulate blastocyst development after in vitro fertilization. Mol. Reprod. Dev. 51, 395–401.
Crossref | GoogleScholarGoogle Scholar | PubMed | Ledda S., Bogliolo L., Leoni G., Loi P., Cappai P., and Naitana S. (1998). Meiotic and developmental competence of in vitro matured lamb oocytes. In ‘Gametes: Development and Function’. (Eds A. Lauria, A. F. Gandolfi, G. Enne and L. Giannaroli.) pp. 101–113. (Serono Symposia: Rome, Italy.)

Leoni, G. , Ledda, S. , Bogliolo, L. , Succu, S. , Rosati, I. , Bebbere, D. , Pintus, P. P. , and Naitana, S. (2004). Ovine prepubertal oocyte shows alternate gene expression and low developmental competence. Reprod. Fertil. Dev. 16, 240.[Abstract]
Crossref | GoogleScholarGoogle Scholar | Reiger D., Luciano A. M., Modina S., Pocar P., Lauria A., and Gandolfi F. (1995). The effect of EGF and IGF-I on metabolism and nuclear maturation of cattle oocytes. J. Reprod. Fertil. Abstract Series 15, Abstract 73.

Rodríguez-González, E. , Lopez-Bejar, M. , Velilla, D. , and Paramio, M. T. (2000). Effects of epidermal growth factor and cysteamine during in vitro maturation of prepubertal goat oocytes on maturation, in vitro fertilization and embryonic development. Theriogenology 53, 468.[Abstract]


Rodríguez-González, E. , Lopez-Bejar, M. , Velilla, E. , and Paramio, M.-T. (2002). Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 57, 1397–1409.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rodríguez-González, E. , Lopez-Bejar, M. , Izquierdo, D. , and Paramio, M.-T. (2003). Developmental competence of prepubertal goat oocytes selected with brilliant cresyl blue and matured with cysteamine supplementation. Reprod. Nutr. Dev. 43, 179–187.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sakaguchi, M. , Dominko, T. , Leibfried-Rutledge, M. L. , Nagai, T. , and First, N. L. (2000). A combination of EGF and IGF-I accelerates the progression of meiosis in bovine follicular oocytes in vitro and fetal calf serum neutralizes the acceleration effect. Theriogenology 54, 1327–1342.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sakaguchi, M. , Dominko, T. , Yamauchi, N. , Leibfried-Rutledge, M. L. , Nagai, T. , and First, N. L. (2002). Possible mechanism for acceleration of meiotic progression of bovine follicular oocytes by growth factors in vitro. Reproduction 123, 135–142.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Simmen, R. C. M. , Ko, Y. , and Simmen, F. A. (1993). Insulin-like growth factors and blastocyst development. Theriogenology 39, 163–175.
Crossref | GoogleScholarGoogle Scholar |

Singh, B. , and Armstrong, D. T. (1994). Localisation of epidermal growth factor and its receptor in the porcine ovarian follicle and its effects on in vitro maturation and in vitro fertilisation of porcine oocytes. Theriogenology 41, 295.[Abstract]
Crossref | GoogleScholarGoogle Scholar |

Spicer, L. J. , and Chamberlain, C. S. (2000). Production of insulin-like growth factor-I by granulosa cells but not thecal cells is hormonally-responsive in cattle. J. Anim. Sci. 78, 2919–2926.
PubMed |

Spicer, L. J. , and Geisert, R. D. (1992). Concentrations of insulin-like growth factor-I, estradiol and progesterone in follicular fluid of ovarian follicles during early pregnancy in cattle. Theriogenology 37, 749–760.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Spicer, L. J. , Alpizar, E. , and Stewart, R. E. (1994). Evidence for an inhibitory effect of insulin-like growth factor-I and -II on insulin-stimulated steroidogenesis by nontransformed ovarian granulosa cells. Endocrine 2, 735–739.


Takahashi, M. , Nagai, T. , Hamano, S. , Kuwayama, M. , Okamura, N. , and Okano, A. (1993). Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49, 228–232.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Urdaneta, A. , Jimenez-Macedo, A.-R. , Izquierdo, D. , and Paramio, M.-T. (2003). Supplementation with cysteamine during maturation and embryo culture on embryo development of prepubertal goat oocytes selected by the brilliant cresyl blue test. Zygote 11, 347–354.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Walker, S. K. , Hill, J. L. , Kleemann, D. O. , and Nancarrow, C. D. (1996). Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol. Reprod. 55, 703–708.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Watson, A. J. , Hogan, A. , Hahnel, A. , Wiemer, K. E. , and Schultz, G. A. (1992). Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Mol. Reprod. Dev. 31, 87–95.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Watson, A. J. , Watson, P. H. , Arcellana-Panlilio, M. , Warnes, D. , Walker, S. K. , Schultz, G. A. , Armstrong, D. T. , and Seamark, R. F. (1994). A growth factor phenotype map for ovine preimplantation development. Biol. Reprod. 50, 725–733.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Westergaard, L. G. , Andersen, C. Y. , and Byshov, A. G. (1990). Epidermal growth factor in small antral ovarian follicle of pregnant women. J. Endocrinol. 127, 363–367.
PubMed |

Wu, G. , Bazer, F. W. , Cudd, T. A. , Meininger, C. J. , and Spencer, T. E. (2004). Maternal nutrition and fetal development. J. Nutr. 134, 2169–2172.
PubMed |

Wu, G. , Bazer, F. W. , Wallace, J. M. , and Spencer, T. E. (2006). Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoshida, M. , Ishigaki, K. , Nagai, T. , Chikyu, M. , and Pursel, V. G. (1993). Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 49, 89–94.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoshimura, Y. (1998). Insulin-like growth factors and ovarian physiology. J. Obstet. Gynaecol. Res. 24, 305–323.
PubMed |

Zhou, J. , Bievre, M. , and Bondy, C. A. (2000). Reduced GLUT1 expression in IGF-I –/– null oocytes and follicles. Growth Horm. IGF Res. 10, 111–117.
Crossref | GoogleScholarGoogle Scholar | PubMed |