Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of the luteinising hormone surge on regulation of vascular endothelial growth factor and extracellular matrix-degrading proteinases and their inhibitors in bovine follicles

Bajram Berisha A D , Martin Steffl B , Harald Welter C , Heike Kliem A , Heinrich H. D. Meyer A , Dieter Schams A and Werner Amselgruber B
+ Author Affiliations
- Author Affiliations

A Physiology Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany.

B Anatomy and Physiology, University of Hohenheim, Fruwirthstr. 35, 70599 Stuttgart, Germany.

C Animal Husbandry and Regulation Physiology, University of Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany.

D Corresponding author. Email: berisha@wzw.tum.de

Reproduction, Fertility and Development 20(2) 258-268 https://doi.org/10.1071/RD07125
Submitted: 30 July 2007  Accepted: 5 November 2007   Published: 4 January 2008

Abstract

The aim of the present study was to evaluate the pattern of regulation of vascular endothelial growth factor (VEGF)-A (isoforms 121, 165, 189), VEGF receptor tyrosine kinases (VEGF-R1 and VEGF-R2), matrix metalloproteinase (MMP)-1, MMP-2, MMP-14, MMP-19, tissue-specific inhibitor of metalloproteinases (TIMP)-1, TIMP-2, tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), urokinase plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) in time-defined follicle classes before (0 h) and after the application of gonadotrophin-releasing hormone (GnRH). Bovine ovaries containing periovulatory follicles or new corpora lutea (CL; Days 1–2) were collected 0, 4, 10, 20 and 25 h (follicles) or 60 h (CL) after the injection of GnRH. Transcripts of VEGF isoforms (VEGF121, VEGF165, VEGF189) were upregulated 4 h after GnRH injection (during the luteinising hormone (LH) surge) and decreased thereafter to lowest levels around ovulation. All VEGF isoforms and their receptors were upregulated again after ovulation. The VEGF peptide concentration in follicular fluid decreased 20 h after GnRH injection, followed by an increase in follicles 25 h after GnRH. Expression of MMP-1 mRNA increased rapidly 4 h after GnRH injection and remained high during the entire experimental period. In contrast, MMP-19 mRNA increased significantly only after ovulation. Expression of TIMP-1 mRNA increased 4 h after GnRH and again after ovulation. Expression of tPA mRNA increased 4 h after GnRH and remained high during the entire experimental period, whereas expression of uPA transcripts increased significantly only after ovulation. Both uPAR and PAI-1 mRNA levels increased in follicles 4 h after GnRH and again after ovulation. The amount of MMP-1 protein (immunolocalisation) increased in follicles 10 h after GnRH: additional staining was observed in the granulosa cell layer. In conclusion, the temporal and spatial pattern of regulation of VEGF and extracellular matrix-degrading proteinases during periovulation suggests they are important mediators of the LH-dependent rupture of bovine follicles and for early CL formation (angiogenesis).

Additional keywords: matrix metalloproteinases, plasminogen activator.


Acknowledgements

The authors are grateful Mrs G. Schwentker, Mrs M. Partsch and Mrs K. Müller for technical assistance. This study was supported by the German Research Foundation (DFG).


References

Alon, T. , Hemo, I. , Itin, A. , Peer, J. , Stone, J. , and Keshet, E. (1995). Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1, 1024–1028.
Crossref | GoogleScholarGoogle Scholar | PubMed | Berisha B. (2007). ‘Local Regulation in the Bovine Ovary: Extracellular Matrix Degradation, Angiogenesis and Angiolysis.’ (Sierke Verlag: Göttingen.)

Berisha, B. , Schams, D. , Kosmann, M. , Amselgruber, W. , and Einspanier, R. (2000a). Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy. Biol. Reprod. 63, 1106–1114.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Berisha, B. , Schams, D. , Kosmann, M. , Amselgruber, W. , and Einspanier, R. (2000b). Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J. Endocrinol. 167, 371–382.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Berisha, B. , Pfaffl, M. W. , and Schams, D. (2002). Expression of estrogen and progesterone receptors in the bovine ovary during estrous cycle and pregnancy. Endocrine 17, 207–214.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Berisha, B. , Steffl, M. , Amselgruber, W. , and Schams, D. (2006a). Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction 131, 319–329.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Berisha, B. , Welter, H. , Shimizu, T. , Miyamoto, A. , Meyer, H. H. D. , and Schams, D. (2006b). Expression of fibroblast growth factor 1 (FGF1) and FGF7 in mature follicles during the periovulatory period after GnRH in the cow. J. Reprod. Dev. 52, 307–313.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Chomczynski, P. , and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Christenson, L. K. , and Stouffer, R. L. (1997). Follicle-stimulating hormone and luteinizing hormone/chorionic gonadotropin stimulation of vascular endothelial growth factor production by macaque granulosa cells from pre- and periovulatory follicles. J. Clin. Endocrinol. Metab. 82, 2135–2142.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Colgin, D. C. , and Murdoch, W. J. (1997). Evidence for a role of the ovarian surface epithelium in the ovulatory mechanism of the sheep: secretion of urokinase-type plasminogen activator. Anim. Reprod. Sci. 47, 197–204.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Connolly, D. T. (1991). Vascular permeability factor: a unique regulator of blood vessel function. J. Cell. Biochem. 47, 219–223.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Curry, T. E. , and Osteen, K. G. (2003). The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr. Rev. 24, 428–465.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Curry, T. E. , and Smith, M. F. (2006). Impact of extracellular matrix remodeling on ovulation and the folliculo-luteal transition. Semin. Reprod. Med. 24, 228–241.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dow, M. P. , Bakke, L. J. , Cassar, C. A. , Peters, M. W. , Pursley, J. R. , and Smith, G. W. (2002a). Gonadotrophin surge-induced upregulation of mRNA for plasminogen activator inhibitors 1 and 2 within bovine periovulatory follicular and luteal tissue. Reproduction 123, 711–719.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dow, M. P. , Bakke, L. J. , Cassar, C. A. , Peters, M. W. , Pursley, J. R. , and Smith, G. W. (2002b). Gonadotropin surge-induced up-regulation of the plasminogen activators (tissue plasminogen activator and urokinase plasminogen activator) and the urokinase plasminogen activator receptor within bovine periovulatory follicular and luteal tissue. Biol. Reprod. 66, 1413–1421.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dvorak, H. F. , Brown, L. F. , Detmar, M. , and Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146, 1029–1039.
PubMed |

Ferrara, N. , and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fibbi, G. , Caldini, R. , Chevanne, M. , Pucci, M. , Schiavone, N. , Morbidelli, L. , Parenti, A. , Granger, H. J. , Del Rosso, M. , and Ziche, M. (1998). Urokinase-dependent angiogenesis in vitro and diacylglycerol production are blocked by antisense oligonucleotides against the urokinase receptor. Lab. Invest. 78, 1109–1119.
PubMed |

Field, S. L. , Khachigian, L. M. , Sleigh, M. J. , Yang, G. , Vandermark, S. E. , Hogg, P. J. , and Chesterman, C. N. (1996). Extracellular matrix is a source of mitogenically active platelet-derived growth factor. J. Cell. Physiol. 168, 322–332.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gerdes, U. , Gafvels, M. , Bergh, A. , and Cajander, S. (1992). Localized increases in ovarian vascular permeability and leucocyte accumulation after induced ovulation in rabbits. J. Reprod. Fertil. 95, 539–550.
PubMed |

Herbert, J. M. , Lamarche, I. , and Carmeliet, P. (1997). Urokinase and tissue-type plasminogen activator are required for the mitogenic and chemotactic effects of bovine fibroblast growth factor and platelet-derived growth factor-BB for vascular smooth muscle cells. J. Biol. Chem. 272, 23 585–23 591.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jo, M. , and Curry, T. E. (2004). Regulation of matrix metalloproteinase-19 messenger RNA expression in the rat ovary. Biol. Reprod. 71, 1796–1806.
Crossref | GoogleScholarGoogle Scholar | PubMed |

John, A. , and Tuszynski, G. (2001). The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol. Oncol. Res. 7, 14–23.
PubMed |

Kliem, H. , Welter, H. , Kraetzl, W. D. , Steffl, M. , Meyer, H. H. D. , Schams, D. , and Berisha, B. (2007). Expression and localisation of extracellular matrix degrading proteases and their inhibitors during the oestrous cycle and after induced luteolysis in the bovine corpus luteum. Reproduction 134, 535–547.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kolb, C. , Mauch, S. , Krawinkel, U. , and Sedlacek, R. (1999). Matrix metalloproteinase-19 in capillary endothelial cells: expression in acutely, but not in chronically, inflamed synovium. Exp. Cell Res. 250, 122–130.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lamoreaux, W. J. , Fitzgerald, M. E. , Reiner, A. , Hasty, K. A. , and Charles, S. T. (1998). Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc. Res. 55, 29–42.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, K. , Liu, Y. X. , Hu, Z. Y. , Zou, R. Y. , Chen, Y. J. , Mu, X. M. , and Ny, T. (1997). Temporal expression of urokinase type plasminogen activator, tissue type plasminogen activator, plasminogen activator inhibitor type 1 in rhesus monkey corpus luteum during the luteal maintenance and regression. Mol. Cell. Endocrinol. 133, 109–116.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, K. , Wahlberg, P. , Hagglund, A. C. , and Ny, T. (2003). Expression pattern and functional studies of matrix degrading proteases and their inhibitors in the mouse corpus luteum. Mol. Cell. Endocrinol. 205, 131–140.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, Y. X. (2004). Plasminogen activator/plasminogen activator inhibitors in ovarian physiology. Front. Biosci. 9, 3356–3373.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Livak, K. J. , and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Methods 25, 402–408.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lopes, F. L. , Desmarais, J. , Gevry, N. Y. , Ledoux, S. , and Murphy, B. D. (2003). Expression of vascular endothelial growth factor isoforms and receptors Flt-1 and KDR during the peri-implantation period in the mink, Mustela vison. Biol. Reprod. 68, 1926–1933.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Partridge, C. R. , Hawker, J. R. , and Forough, R. (2000). Overexpression of a secretory form of FGF-1 promotes MMP-1-mediated endothelial cell migration. J. Cell. Biochem. 78, 487–499.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pepper, M. S. , Ferrara, N. , Orci, L. , and Montesano, R. (1991). Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 181, 902–906.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pfaffl, M. W. , Wittmann, S. L. , Meyer, H. H. D. , and Bruckmaier, R. M. (2003). Gene expression of immunologically important factors in blood cells, milk cells, and mammary tissue of cows. J. Dairy Sci. 86, 538–545.
PubMed |

Politis, I. , Srikandakumar, A. , Turner, J. D. , Tsang, B. K. , Ainsworth, L. , and Downey, B. R. (1990). Changes in and partial identification of the plasminogen activator and plasminogen activator inhibitor systems during ovarian follicular maturation in the pig. Biol. Reprod. 43, 636–642.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reich, R. , Miskin, R. , and Tsafriri, A. (1985). Follicular plasminogen activator: involvement in ovulation. Endocrinology 116, 516–521.
PubMed |

Sato, Y. , Abe, M. , Tanaka, K. , Iwasaka, C. , Oda, N. , Kanno, S. , Oikawa, M. , Nakano, T. , and Igarashi, T. (2000). Signal transduction and transcriptional regulation of angiogenesis. Adv. Exp. Med. Biol. 476, 109–115.
PubMed |

Savio, J. D. , Keenan, L. , Boland, M. P. , and Roche, J. F. (1988). Pattern of growth of dominant follicles during the oestrous cycle of heifers. J. Reprod. Fertil. 83, 663–671.
PubMed |

Schams, D. , Hofer, F. , Schallenberger, E. , Hartl, M. , and Karg, H. (1974). Pattern of luteinizing hormone (LH) and follicle stimulating hormone (FSH) in bovine blood plasma after injection of a synthetic gonadotropin-releasing hormone (Gn-RH). Theriogenology 1, 137–151.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schams, D. , Schallenberger, E. , Hoffmann, B. , and Karg, H. (1977). The oestrous cycle of the cow: hormonal parameters and time relationships concerning oestrus, ovulation, and electrical resistance of the vaginal mucus. Acta Endocrinol. (Copenh.) 86, 180–192.
PubMed |

Schams, D. , Kosmann, M. , Berisha, B. , Amselgruber, W. M. , and Miyamoto, A. (2001). Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells. Exp. Clin. Endocrinol. Diabetes 109, 155–162.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schams, D. , Berisha, B. , Kosmann, M. , and Amselgruber, W. M. (2002). Expression and localization of IGF family members in bovine antral follicles during final growth and in luteal tissue during different stages of estrous cycle and pregnancy. Domest. Anim. Endocrinol. 22, 51–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schams, D. , Berisha, B. , Neuvians, T. , Amselgruber, W. , and Kraetzl, W. D. (2003). Real-time changes of the local vasoactive peptide systems (angiotensin, endothelin) in the bovine corpus luteum after induced luteal regression. Mol. Reprod. Dev. 65, 57–66.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Senger, D. R. , Van de Water, L. , Brown, L. F. , Nagy, J. A. , Yeo, K. T. , Yeo, T. K. , Berse, B. , Jackman, R. W. , Dvorak, A. M. , and Dvorak, H. F. (1993). Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 12, 303–324.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, G. W. , Juengel, J. L. , Mclntush, E. W. , Youngquist, R. S. , Garverick, H. A. , and Smith, M. F. (1996). Ontogenies of messenger RNA encoding tissue inhibitor of metalloproteinases 1 and 2 within bovine periovulatory follicles and luteal tissue. Domest. Anim. Endocrinol. 13, 151–160.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stetler-Stevenson, W. G. (1999). Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103, 1237–1241.
PubMed |

Tischer, E. , Gospodarowicz, D. , Mitchell, R. , Silva, M. , Schilling, J. , Lau, K. , Crisp, T. , Fiddes, J. C. , and Abraham, J. A. (1989). Vascular endothelial growth factor: a new member of the platelet-derived growth factor gene family. Biochem. Biophys. Res. Commun. 165, 1198–1206.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Unemori, E. N. , Ferrara, N. , Bauer, E. A. , and Amento, E. P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. J. Cell. Physiol. 153, 557–562.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, H. , and Keiser, J. A. (1998). Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: role of flt-1. Circ. Res. 83, 832–840.
PubMed |

Zeleznik, A. J. , Schuler, H. M. , and Reichert, L. E. (1981). Gonadotropin-binding sites in the rhesus monkey ovary: role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. Endocrinology 109, 356–362.
PubMed |

Zhao, Y. , and Luck, M. R. (1995). Gene expression and protein distribution of collagen, fibronectin and laminin in bovine follicles and corpora lutea. J. Reprod. Fertil. 104, 115–123.
PubMed |