Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cysteamine supplementation of in vitro maturation medium, in vitro culture medium or both media promotes in vitro development of buffalo (Bubalus bubalis) embryos

T. Anand A , D. Kumar A , M. S. Chauhan A , R. S. Manik A and P. Palta A B
+ Author Affiliations
- Author Affiliations

A Animal Biotechnology Centre, National Dairy Research Institute, Karnal-132 001, India.

B Corresponding author. Email: prabhatpalta@yahoo.com

Reproduction, Fertility and Development 20(2) 253-257 https://doi.org/10.1071/RD07167
Submitted: 21 September 2007  Accepted: 15 November 2007   Published: 4 January 2008

Abstract

The effects of supplementation of in vitro maturation (IVM) or in vitro culture (IVC) or both IVM and IVC media with cysteamine on the yield, hatching rate (HR) and total cell number (TCN) of buffalo blastocysts were examined. Oocytes obtained from slaughterhouse buffalo ovaries were subjected to IVM and IVF. The IVM or IVC media were supplemented with 0, 50, 100 or 200 µm cysteamine. Supplementation of IVM medium with 50 µm cysteamine increased (P < 0.01) the cleavage rate and blastocyst yield without affecting the HR and TCN whereas a higher concentration of 200 µm significantly (P < 0.05) reduced the blastocyst yield but not TCN. Similar increases in blastocyst yield, without any effect on HR and TCN were observed after supplementation of the IVC medium with 100 (P < 0.01) or 50 µm (P < 0.05) cysteamine, whereas 200 µm cysteamine was ineffective. Supplementation of both IVM medium with 50 µm cysteamine and of IVC medium with 100 µm cysteamine increased the yield of blastocysts and hatched blastocyst by over 100% (P < 0.01) compared with the controls without any adverse effects on HR or TCN. The results of the present study suggest that supplementation of both IVM and IVC media improves the yield of blastocysts without compromising their health.

Additional keyword: in vitro fertilisation.


Acknowledgements

This work was partly supported by the Department of Biotechnology, Ministry of Science & Technology, Government of India.


References

Abeydeera, L. R. , Wang, W. H. , Cantley, T. C. , Prather, R. S. , and Day, B. N. (1998). Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology 50, 747–756.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bavister, B. D. (1995). Culture of pre-implantation embryos: facts and artifacts. Hum. Reprod. 1, 91–148.
Crossref | GoogleScholarGoogle Scholar |

Chauhan, M. S. , Katiyar, P. K. , Singla, S. K. , Manik, R. S. , and Madan, M. L. (1997). Production of buffalo calves through in vitro fertilization. Indian J. Anim. Sci. 67, 306–308.


Chauhan, M. S. , Singla, S. K. , Palta, P. , Manik, R. S. , and Madan, M. L. (1998). In vitro maturation and fertilization, and subsequent development of buffalo (Bubalus bubalis) embryos: effects of oocyte quality and type of serum. Reprod. Fertil. Dev. 10, 173–177.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , and Furnus, C. C. (2000). The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development: effect of β-mercaptoethanol, cysteine and cystine. Theriogenology 53, 761–771.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , Furnus, C. C. , Moses, D. F. , and Baldassarre, H. (1995). Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol. Reprod. Dev. 42, 432–436.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , Gasparrini, B. , Pasqualini, S. R. , and Thompson, J. G. (2002a). Effect of glutathione synthesis stimulation during in vitro maturation of ovine oocytes on embryo development and intracellular peroxide content. Theriogenology 57, 1443–1451.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de Matos, D. G. , Herrera, C. , Cortvrindt, R. , Smitz, J. , Van Soom, A. , Nogueira, D. , and Pasqualini, R. S. (2002b). Cysteamine supplementation during in vitro maturation and embryo culture: a useful tool for increasing the efficiency of bovine in vitro embryo production. Mol. Reprod. Dev. 62, 203–209.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gasparrini, B. , Sayoud, H. , Neglia, G. , de Matos, D. G. , Donnay, I. , and Zicarelli, L. (2003). Glutathione synthesis during in vitro maturation of buffalo (Bubalus bubalis) oocytes: effects of cysteamine on embryo development. Theriogenology 60, 943–952.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gasparrini, B. , Boccia, L. , Marchandise, J. , Palo, R. D. , George, F. , Donnay, I. , and Zicarelli, L. (2006). Enrichment of in vitro maturation medium for buffalo (Bubalus bubalis) oocytes with thiol compounds: effects of cystine on glutathione synthesis and embryo development. Theriogenology 65, 275–287.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Goto, Y. , Noda, Y. , Mori, T. , and Nakano, M. (1993). Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic. Biol. Med. 15, 69–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Issels, R. D. , Nagele, A. , Eckert, K. G. , and Wilmanns, W. (1988). Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and n-acetyl-cysteine. Biochem. Pharmacol. 37, 881–888.
Crossref | n
-acetyl-cysteine.&journal=Biochem. Pharmacol.&volume=37&pages=881-888&publication_year=1988&author=R%2E%20D%2E%20Issels&hl=en&doi=10.1016/0006-2952(88)90176-1" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | PubMed |

Kobayashi, M. , Lee, E. , and Fukui, Y. (2006). Cysteamine or β-mercaptoethanol added to a defined maturation medium improves blastocyst formation of porcine oocytes after intracytoplasmic sperm injection. Theriogenology 65, 1191–1199.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kumar, D. , Palta, P. , Manik, R. S. , Singla, S. K. , and Chauhan, M. S. (2007). Effect of culture media and serum supplementation on the development of in vitro fertilized buffalo embryos. Indian J. Anim. Sci. 77, 697–701.


Lee, C. S. , Koo, D. B. , Fang, N. , Lee, Y. , Shin, S. T. , Park, C. S. , and Lee, K. K. (2000). Potent and stage-specific action of glutathione on the development of goat early embryos in vitro. Mol. Reprod. Dev. 57, 48–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liang, X. , Zhang, X. , Yang, B. , Cheng, M. , and Huang, F. , et al. (2007). Pregnancy and calving rates following transfer of in vitro-produced river and F1 (river × swamp) buffalo (Bubalus bubalis) embryos in recipients on natural oestrus or synchronized for ovulation. Reprod. Fertil. Dev. 19, 670–676.
PubMed |

Lim, J. M. , Liou, S. S. , and Hansel, W. (1996). Intracytoplasmic glutathione concentration and the role of β-mercaptoethanol in preimplantation development of bovine embryos. Theriogenology 46, 429–439.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nandi, S. , Raghu, H. M. , Ravindranatha, B. M. , and Chauhan, M. S. (2002). Production of buffalo (Bubalus bubalis) embryos in vitro: premises and promises. Reprod. Domest. Anim. 37, 65–74.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Palta, P. , and Chauhan, M. S. (1998). Laboratory production of buffalo (Bubalus bubalis) embryos. Reprod. Fertil. Dev. 10, 379–391.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rodriguez-Gonzalez, E. , Lopez-Bejar, M. , Mertens, M. J. , and Paramio, M. T. (2003). Effects on in vitro embryo development and intracellular glutathione content of the presence of thiol compounds during maturation of prepubertal goat oocytes. Mol. Reprod. Dev. 65, 446–453.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yang, X. , Kubota, C. , Suzuki, H. , Taneja, M. , Bols, P. E. , and Presicce, G. A. (1998). Control of oocyte maturation in cows – biological factors. Theriogenology 49, 471–482.
Crossref | GoogleScholarGoogle Scholar | PubMed |