Intracytoplasmic sperm injection in the bovine induces abnormal [Ca2+]i responses and oocyte activation
Christopher Malcuit A , Marc Maserati B , Yoshiyuki Takahashi C , Raymond Page B and Rafael A. Fissore A DA Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
B Cyagra Inc., Research and Development, 200 Westboro Rd, North Grafton, MA 01536, USA.
C Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
D Corresponding author. Email: rfissore@vasci.umass.edu
Reproduction, Fertility and Development 18(2) 39-51 https://doi.org/10.1071/RD05131
Submitted: 3 October 2005 Accepted: 3 October 2005 Published: 14 December 2005
Abstract
Fertilisation by intracytoplasmic sperm injection (ICSI), a technique that bypasses the membrane fusion of the gametes, has been widely used to produce offspring in humans and mice. Success with this technique has lent support to the hypothesis that in mammalian fertilisation, a factor from the sperm, the so-called sperm factor, is responsible for oocyte activation and that the fusion process is not involved in the generation of the hallmark [Ca2+]i signalling seen following fertilisation. However, the success of ICSI has largely eluded large domestic species, such as the bovine, porcine and equine, casting doubt on the current model of oocyte activation at fertilisation in these species. Using Ca2+ imagery and a series of treatments to manipulate the chemical structure of the sperm, we have investigated the early events of oocyte activation in response to ICSI in the bovine. Our results demonstrate, for the first time, that following ICSI, the majority of bovine oocytes are unable to mount [Ca2+]i oscillations, although, in few cases, the initiation of [Ca2+]i oscillations can occur in a manner indistinguishable from in vitro fertilisation. We also show that bull sperm possess a full complement of sperm factor. However, either the release and/or activation of the sperm factor are compromised after ICSI, leading to the delivery of a defective Ca2+ stimulus, which results in premature termination of embryo development.
Acknowledgments
This project was supported, in part, by grants from the National Research Initiative Competitive Grants from the US Department of Agriculture (USDA; 2002-2078), the USDA/Hatch programme and from the National Institutes of Health RO3 to RAF.
Bedford, S. J. , Kurokawa, M. , Hinrichs, K. , and Fissore, R. A. (2003). Intracellular calcium oscillations and activation in horse oocytes injected with stallion sperm extracts or spermatozoa. Reproduction 126, 489–499.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bedford, S. J. , Kurokawa, M. , Hinrichs, K. , and Fissore, R. A. (2004). Patterns of intracellular calcium oscillations in horse oocytes fertilized by intracytoplasmic sperm injection: possible explanations for the low success of this assisted reproduction technique in the horse. Biol. Reprod. 70, 936–944.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Choi, J. Y. , Lee, E. Y. , Cheong, H. T. , Yoon, B. K. , Bae, D. S. , and Choi, D. S. (2004). Effects of activation timing on the fertilization rate and early embryo development in porcine ROSI procedure. J. Assist. Reprod. Genet. 21, 329–334.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Chung, J. T. , Keefer, C. L. , and Downey, R. B. (2000). Activation of bovine oocytes following intracytoplasmic sperm injection (ICSI). Theriogenology 53, 1273–1284.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Damiani, P. , Fissore, R. A. , Cibelli, J. B. , Long, C. R. , Balise, J. J. , Robl, J. M. , and Duby, R. T. (1996). Evaluation of developmental competence, nuclear and ooplasmic maturation of calf oocytes. Mol. Reprod. Dev. 45, 521–534.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Devroey, P. , and Van Steirteghem, A. (2004). A review of ten years experience of ICSI. Hum. Reprod. Update 10, 19–28.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ducibella, T. , Huneau, D. , Angelichio, E. , Xu, Z. , Schultz, R. M. , Kopf, G. S. , Fissore, R. , Madoux, S. , and Ozil, J. P. (2002). Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Dev. Biol. 250, 280–291.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Eid, L. N. , Lorton, S. P. , and Parrish, J. J. (1994). Paternal influence on S-phase in the first cell cycle of the bovine embryo. Biol. Reprod. 51, 1232–1237.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fissore, R. A. , Dobrinsky, J. R. , Balise, J. J. , Duby, R. T. , and Robl, J. M. (1992). Patterns of intracellular Ca2+ concentrations in fertilized bovine eggs. Biol. Reprod. 47, 960–969.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Fujimoto, S. , Yoshida, N. , Fukui, T. , Amanai, M. , Isobe, T. , Itagaki, C. , Izumi, T. , and Perry, A. C. (2004). Mammalian phospholipase C zeta induces oocyte activation from the sperm perinuclear matrix. Dev. Biol. 274, 370–383.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Galantino-Homer, H. L. , Visconti, P. E. , and Kopf, G. S. (1997). Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3′5′-monophosphate-dependent pathway. Biol. Reprod. 56, 707–719.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Galli, C. , Vassiliev, I. , Lagutina, I. , Galli, A. , and Lazzari, G. (2003). Bovine embryo development following ICSI: effect of activation, sperm capacitation and pre-treatment with dithiothreitol. Theriogenology 60, 1467–1480.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Goto, K. , Kinoshita, A. , Takuma, Y. , and Ogawa, K. (1990). Fertilisation of bovine oocytes by the injection of immobilised, killed spermatozoa. Vet. Rec. 127, 517–520.
| PubMed |
He, C. L. , Damiani, P. , Ducibella, T. , Takahashi, M. , Tanzawa, K. , Parys, J. B. , and Fissore, R. A. (1999). Isoforms of the inositol 1,4,5-trisphosphate receptor are expressed in bovine oocytes and ovaries: the type-1 isoform is down-regulated by fertilization and by injection of adenophostin A. Biol. Reprod. 61, 935–943.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Horiuchi, T. , Emuta, C. , Yamauchi, Y. , Oikawa, T. , Numabe, T. , and Yanagimachi, R. (2002). Birth of normal calves after intracytoplasmic sperm injection of bovine oocytes: a methodological approach. Theriogenology 57, 1013–1024.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jellerette, T. , He, C. L. , Wu, H. , Parys, J. B. , and Fissore, R. A. (2000). Down-regulation of the inositol 1,4,5-trisphosphate receptor in mouse eggs following fertilization or parthenogenetic activation. Dev. Biol. 223, 238–250.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kimura, Y. , and Yanagimachi, R. (1995). Intracytoplasmic sperm injection in the mouse. Biol. Reprod. 52, 709–720.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kimura, Y. , Yanagimachi, R. , Kuretake, S. , Bortkiewicz, H. , Perry, A. C. , and Yanagimachi, H. (1998). Analysis of mouse oocyte activation suggests the involvement of sperm perinuclear material. Biol. Reprod. 58, 1407–1415.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Knott, J. G. , Poothapillai, K. , Wu, H. , He, C. L. , Fissore, R. A. , and Robl, J. M. (2002). Porcine sperm factor supports activation and development of bovine nuclear transfer embryos. Biol. Reprod. 66, 1095–1103.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Knott, J. G. , Kurokawa, M. , and Fissore, R. A. (2003). Release of the Ca2+ oscillation-inducing sperm factor during mouse fertilization. Dev. Biol. 260, 536–547.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Kouchi, Z. , Fukami, K. , Shikano, T. , Oda, S. , Nakamura, Y. , Takenawa, T. , and Miyazaki, S. (2004). Recombinant phospholipase C zeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J. Biol. Chem. 279, 10 408–10 412.
| Crossref | GoogleScholarGoogle Scholar |
Kurokawa, M. , and Fissore, R. A. (2003). ICSI-generated mouse zygotes exhibit altered calcium oscillations, inositol 1,4,5-trisphosphate receptor-1 down-regulation, and embryo development. Mol. Hum. Reprod. 9, 523–533.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Larman, M. G. , Saunders, C. M. , Carroll, J. , Lai, F. A. , and Swann, K. (2004). Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLC zeta. J. Cell Sci. 117, 2513–2521.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Larson, J. L. , and Miller, D. J. (1999). Simple histochemical stain for acrosomes on sperm from several species. Mol. Reprod. Dev. 52, 445–449.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Malcuit, C. , Knott, J. G. , He, C. , Wainwright, T. , Parys, J. B. , Robl, J. M. , and Fissore, R. A. (2005). Fertilization and inositol 1,4,5-trisphosphate (ip3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs. Biol. Reprod. 73, 2–13.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nakada, K. , Mizuno, J. , Shiraishi, K. , Endo, K. , and Miyazaki, S. (1995). Initiation, persistence, and cessation of the series of intracellular Ca2+ responses during fertilization of bovine eggs. J. Reprod. Dev. 41, 77–84.
| Crossref | GoogleScholarGoogle Scholar |
Nakano, Y. , Shirakawa, H. , Mitsuhashi, N. , Kuwabara, Y. , and Miyazaki, S. (1997). Spatiotemporal dynamics of intracellular calcium in the mouse egg injected with a spermatozoon. Mol. Hum. Reprod. 3, 1087–1093.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Oberdorf, J. , Webster, J. M. , Zhu, C. C. , Luo, S. G. , and Wojcikiewicz, R. J. (1999). Down-regulation of types I, II and III inositol 1,4,5-trisphosphate receptors is mediated by the ubiquitin/proteasome pathway. Biochem. J. 339, 453–461.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Oikawa, T. , Takada, N. , Kikuchi, T. , Numabe, T. , Takenaka, M. , and Horiuchi, T. (2005). Evaluation of activation treatments for blastocyst production and birth of viable calves following bovine intracytoplasmic sperm injection. Anim. Reprod. Sci. 86, 187–194.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Palermo, G. , Joris, H. , Devroey, P. , and Van Steirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Parrish, J. J. , Susko-Parrish, J. L. , and First, N. L. (1985). Effect of heparin and chondroitin sulfate on the acrosome reaction and fertility of bovine sperm in vitro. Theriogenology 24, 537–549.
| Crossref | GoogleScholarGoogle Scholar |
Parrish, J. J. , Susko-Parrish, J. , Winer, M. A. , and First, N. L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–1180.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Parys, J. B. , DeSmedt, H. , Missiaen, L. , Bootman, M. D. , Sienaert, I. , and Casteels, R. (1995). Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium 17, 239–249.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Perreault, S. D. , Barbee, R. R. , Elatein, K. H. , Zucker, R. M. , and Keefer, C. L. (1988). Interspecies difference in the stability of mammalian sperm nuclei assessed in vivo by sperm microinjection and in vitro by flow cytometry. Biol. Reprod. 39, 157–167.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Perry, A. C. , Wakayama, T. , Cooke, I. M. , and Yanagimachi, R. (2000). Mammalian oocyte activation by the synergistic action of discrete sperm head components: induction of calcium transients and involvement of proteolysis. Dev. Biol. 217, 386–393.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rho, G. J. , Kawarsky, S. , Johnson, W. H. , Kochhar, K. , and Betteridge, K. (1998). Sperm and oocyte treatments to improve the formation of male and female pronuclei and subsequent development following intracytoplasmic sperm injection into bovine oocytes. Biol. Reprod. 59, 918–924.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Saunders, C. M. , Larman, M. G. , Parrington, J. , Cox, L. J. , Royse, J. , Blayney, L. M. , Swann, K. , and Lai, F. A. (2002). PLC zeta: a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129, 3533–3544.
| PubMed |
Schultz, R. M. , and Kopf, G. S. (1995). Molecular basis of mammalian egg activation. Curr. Top. Dev. Biol. 30, 21–62.
| PubMed |
Sutovsky, P. , Oko, R. , Hewitson, L. , and Schatten, G. (1997). The removal of the sperm perinuclear theca and its association with the bovine oocyte surface during fertilization. Dev. Biol. 188, 75–84.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sutovsky, P. , Manandhar, G. , Wu, A. , and Oko, R. (2003). Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc. Res. Tech. 61, 362–378.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Suttner, R. , Zakhartchenko, V. , Stojkovitc, P. , Müller, S. , and Alberio, R. , et al. (2000). Intracytoplasmic sperm injection in bovine: effects of oocyte activation, sperm pre-treatment and injection technique. Theriogenology 54, 935–948.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Swann, K. (1990). A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110, 1295–1302.
| PubMed |
Visconti, P. E. , Bailey, J. L. , Moore, G. D. , Pan, D. , Olds-Clarke, P. , and Kopf, G. S. (1995). Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121, 1129–1137.
| PubMed |
Wei, H. , and Fukui, Y. (2002). Birth of calves derived from intercytoplasmic sperm injection without exogenous oocyte activation. Zygote 10, 149–153.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wu, H. , He, C. L. , and Fissore, R. A. (1998). Injection of a porcine sperm factor induces activation of mouse eggs. Mol. Reprod. Dev. 49, 37–47.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zhu, C. C. , and Wojcikiewicz, R. J. (2000). Ligand binding directly stimulates ubiquitination of the inositol 1,4,5-trisphosphate receptor. Biochem. J. 348, 551–556.
| Crossref | GoogleScholarGoogle Scholar | PubMed |