Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Understanding cellular disruptions during early embryo development that perturb viability and fetal development

Michelle Lane A B D and David K. Gardner C
+ Author Affiliations
- Author Affiliations

A Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Woodville, SA 5011, Australia.

B Repromed, 180 Fullarton Road, Dulwich, SA 5065, Australia.

C Colorado Center for Reproductive Medicine, Englewood, CO 80113, USA.

D Corresponding author. Email: michelle.lane@adelaide.edu.au

Reproduction, Fertility and Development 17(3) 371-378 https://doi.org/10.1071/RD04102
Submitted: 22 September 2004  Accepted: 21 November 2004   Published: 14 February 2005

Abstract

An inability to regulate ionic and metabolic homeostasis is related to a reduction in the developmental capacity of the embryo. The early embryo soon after fertilisation and up until compaction appears to have a reduced capacity to regulate its homeostasis. The reduced ability to regulate homeostasis, such as intracellular pH and calcium levels, by the precompaction-stage embryo appears to impact on the ability to regulate mitochondrial function and maintain adequate levels of energy production. This reduction in ATP production causes a cascade of events leading to disrupted cellular function and, perhaps ultimately, disrupted epigenetic regulation and aberrant placental and fetal development. In contrast, after compaction the embryo takes on a more somatic cell-like physiology and is better able to regulate its physiology and therefore appears less vulnerable to stress. Therefore, for human IVF it would seem important for the establishment of healthy pregnancies that the embryos are maintained in systems that are designed to minimise homeostatic stress, particularly for the cleavage-stage embryos, as exposure to stress is likely to culminate in impaired embryo function.


References

Baltz, J. M. , Biggers, J. D. , and Lechene, C. (1990). Apparent absence of Na+/H+ antiport activity in the two-cell mouse embryo. Dev. Biol. 138, 421–429.
Crossref | GoogleScholarGoogle Scholar | PubMed | Campbell A. K. (1983) ‘Intracellular Calcium: Its Universal Role as a Regulator.’ (John Wiley & Sons: Chichester, UK.)

Chatot, C. L. , Ziomek, C. A. , Bavister, B. D. , Lewis, J. L. , and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.
PubMed | Lane M., and Gardner D. K. (2001) Blastomere homeostasis. In ‘Art and the Human Blastocyst’. (Eds M. Lane and D. K. Gardner.) pp. 69–90. (Serono Symposia: Boston, MA, USA.)

Lane, M. , and Gardner, D. K. (2003a). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lane, M. , and Gardner, D. K. (2003b). Aspartate and lactate negate the requirements for pyruvate for the first cleavage division in the mouse. Theriogenology 59, 344.


Lane, M. , Baltz, J. M. , and Bavister, B. D. (1998a). Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol. Reprod. 59, 1483–1490.
PubMed |

Lane, M. , Boatman, D. E. , Albrecht, R. M. , and Bavister, B. D. (1998b). Intracellular divalent cation homeostasis and developmental competence in the hamster preimplantation embryo. Mol. Reprod. Dev. 50, 443–450.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lane, M. , Baltz, J. M. , and Bavister, B. D. (1999a). Bicarbonate/chloride exchange regulates intracellular pH of embryos but not oocytes of the hamster. Biol. Reprod. 61, 452–457.
PubMed |

Lane, M. , Baltz, J. M. , and Bavister, B. D. (1999b). Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev. Biol. 208, 244–252.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lawitts, J. A. , and Biggers, J. D. (1991). Overcoming the 2-cell block by modifying standard components in a mouse embryo culture medium. Biol. Reprod. 45, 245–251.
PubMed |

Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. Oxf. Rev. Reprod. Biol. 13, 35–72.
PubMed |

Leese, H. J. (1995). Metabolic control during preimplantation mammalian development. Hum. Reprod. Update 1, 63–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Leese, H. J. , and Barton, A. M. (1984). Pyruvate and glucose uptake by mouse ova and preimplantation embryos. J. Reprod. Fertil. 72, 9–13.
PubMed |

Leese, H. J. , Biggers, J. D. , Mroz, E. A. , and Lechene, C. (1984). Nucleotides in a single mammalian ovum or preimplantation embryo. Anal. Biochem. 140, 443–448.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ludwig, T. E. , Lane, M. , and Bavister, B. D. (2001a). Differential effect of hexoses on hamster embryo development in culture. Biol. Reprod. 64, 1366–1374.
PubMed |

Ludwig, T. E. , Squirrell, J. M. , Palmenberg, A. C. , and Bavister, B. D. (2001b). Relationship between development, metabolism, and mitochondrial organization in 2-cell hamster embryos in the presence of low levels of phosphate. Biol. Reprod. 65, 1648–1654.
PubMed |

Mann, M. R. , Lee, S. S. , Doherty, A. S. , Verona, R. I. , Nolen, L. D. , Schultz, R. M. , and Bartolomei, M. S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727–3735.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nasr-Esfahani, M. M. , and Johnson, M. H. (1991). The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 113, 551–560.
PubMed |

Nasr-Esfahani, M. H. , and Johnson, M. H. (1992). How does transferrin overcome the in vitro block to development of the mouse preimplantation embryo? J. Reprod. Fertil. 96, 41–48.
PubMed |

Nasr-Esfahani, M. , Johnson, M. H. , and Aitken, R. J. (1990a). The effect of iron and iron chelators on the in vitro block to development of the mouse preimplantation embryo: BAT6 a new medium for improved culture of mouse embryos in vitro. Hum. Reprod. 5, 997–1003.
PubMed |

Nasr-Esfahani, M. H. , Aitken, J. R. , and Johnson, M. H. (1990b). Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 109, 501–507.
PubMed |

Phillips, K. P. , and Baltz, J. M. (1999). Intracellular pH regulation by HCO3–/Cl– exchange is activated during early mouse zygote development. Dev. Biol. 208, 392–405.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Powell, K. (2003). Fertility treatments: Seeds of doubt. Nature 422, 656–658.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rieger, D. , McGowan, L. T. , Cox, S. F. , Pugh, P. A. , and Thompson, J. G. (2002). Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod. Fertil. Dev. 14, 339–343.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rinehart, J. S. , Bavister, B. D. , and Gerrity, M. (1988). Quality control in the in vitro fertilization laboratory: comparison of bioassay systems for water quality. J. In Vitro Fert. Embryo Transf. 5, 335–342.
PubMed |

Schatten, G. P. (2002). Safeguarding ART. Nat. Cell Biol. 4, S19–S22.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schini, S. A. , and Bavister, B. D. (1988). Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–1192.
PubMed |

Schultz, R. M. , and Williams, C. J. (2002). The science of ART. Science 296, 2188–2190.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Scott, L. F. , Sundaram, S. G. , and Smith, S. (1993). The relevance and use of mouse embryo bioassays for quality control in an assisted reproductive technology program. Fertil. Steril. 60, 559–568.
PubMed |

Seshagiri, P. B. , and Bavister, B. D. (1991). Glucose and phosphate inhibit respiration and oxidative metabolism in cultured hamster eight-cell embryos: evidence for the ‘crabtree effect’. Mol. Reprod. Dev. 30, 105–111.
PubMed |

Squirrell, J. M. , Lane, M. , and Bavister, B. D. (2001). Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol. Reprod. 64, 1845–1854.
PubMed |

Stern, S. , Biggers, J. D. , and Anderson, E. (1971). Mitochondria and early development of the mouse. J. Exp. Zool. 176, 179–191.
PubMed |

Thompson, J. G. , Kind, K. L. , Roberts, C. T. , Robertson, S. A. , and Robinson, J. S. (2002). Epigenetic risks related to assisted reproductive technologies: short- and long-term consequences for the health of children conceived through assisted reproduction technology: more reason for caution? Hum. Reprod. 17, 2783–2786.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Blerkom, J. , Davis, P. , and Alexander, S. (2000). Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum. Reprod. 15, 2621–2633.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van den Bergh, M. , Devreker, F. , Emiliani, S. , and Englert, Y. (2001). Glycolytic activity: a possible tool for human blastocyst selection. Reprod. Biomed. Online 3(Suppl. 1), 8.


Van der Auwera, I. , and D’Hooghe, T. (2001). Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 16, 1237–1243.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zander, D. L. , Froiland, D. , and Lane, M. (2004). Ammonium affects mitochondrial distribution and function in mouse 2-cell embryos. Reprod. Fertil. Dev. 16(Suppl.), 81.


Zhao, Y. , and Baltz, J. M. (1996). Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am. J. Physiol. 271, C1512–C1520.
PubMed |

Zhao, Y. , Chauvet, P. J. , Alper, S. L. , and Baltz, J. M. (1995). Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo. J. Biol. Chem. 270, 24 428–24 434.
Crossref | GoogleScholarGoogle Scholar |