Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Ex vivo early embryo development and effects on gene expression and imprinting

David K. Gardner A C and Michelle Lane B
+ Author Affiliations
- Author Affiliations

A Colorado Center for Reproductive Medicine, Englewood, CO 80113, USA.

B Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Woodville, SA 5011, Australia.

C Corresponding author. Email: dgardner@colocrm.com

Reproduction, Fertility and Development 17(3) 361-370 https://doi.org/10.1071/RD04103
Submitted: 24 September 2004  Accepted: 2 December 2004   Published: 14 February 2005

Abstract

The environment to which the mammalian embryo is exposed during the preimplantation period of development has a profound effect on the physiology and viability of the conceptus. It has been demonstrated that conditions that alter gene expression, and in some instances the imprinting status of specific genes, have all previously been shown to adversely affect cell physiology. Thus, questions are raised regarding the aetiology of abnormal gene expression and altered imprinting patterns, and whether problems can be averted by using more physiological culture conditions. It is also of note that the sensitivity of the embryo to its surroundings decreases as development proceeds. Post compaction, environmental conditions have a lesser effect on gene function. This, therefore, has implications regarding the conditions used for IVF and the culture of the cleavage stage embryo. The developmental competence of the oocyte also impacts gene expression in the embryo, and therefore superovulation has been implicated in abnormal methylation and imprinting in the resultant embryo. Furthermore, the genetics and dietary status of the mother have a profound impact on embryo development and gene expression. The significance of specific animal models for human assisted reproductive technologies (ART) is questioned, given that most cattle data have been obtained from in vitro-matured oocytes and that genes imprinted in domestic and laboratory animals are not necessarily imprinted in the human. Patients treated with ART have fertility problems, which in turn may predispose their gametes or embryos to greater sensitivities to the process of ART. Whether this is from the drugs involved in the ovulation induction or from the IVF, intracytoplasmic sperm injection or culture procedures themselves remains to be determined. Alternatively, it may be that epigenetic alterations are associated with infertility and symptoms are subsequently revealed through ART. Whatever the aetiology, continued long-term monitoring of the children conceived through ART is warranted.


References

Benoff, S. , and Hurley, I. R. (2001). Epigenetic and experimental modifications in early mammalian development: part I. Preface. Hum. Reprod. Update 7, 211–216.
Crossref | GoogleScholarGoogle Scholar | PubMed | Gardner D. K., and Lane M. (1993a). Embryo culture systems. In ‘Handbook of In Vitro Fertilization’. (Eds A. O. Trounson and D. K. Gardner.) pp. 85–114. (CRC Press: Boca Raton, FL, USA.)

Gardner, D. K. , and Lane, M. (1993b). Amino acids and ammonium regulate mouse embryo development in culture. Biol. Reprod. 48, 377–385.
PubMed | Gardner D. K., and Lane M. (1999). Embryo culture systems. In ‘Handbook of In Vitro Fertilization’. (Eds A. O. Trounson and D. K. Gardner.) pp. 205–264. (CRC Press: Boca Raton, FL, USA.)

Gardner D. K., and Lane M. (2004a). Culture of the mammalian preimplantation embryo. In ‘A Laboratory Guide to the Mammalian Embryo’. (Eds D. K. Gardner, M. Lane and A. Watson.) pp. 41–61. (Oxford University Press: New York, NY, USA.)

Gardner D. K., and Lane M. (2004b). Culture systems for the human embryo. In ‘Textbook of Assisted Reproductive Technology: Laboratory and Clinical Perspectives’. (Eds D. K. Gardner, A. Weissman, C. Holwes and Z. Shoham.) pp. 211–234. (Martin Dunitz Press: London, UK.)

Gardner, D. K. , and Leese, H. J. (1990). Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J. Reprod. Fertil. 88, 361–368.
PubMed |

Gardner, D. K. , Lane, M. , Spitzer, A. , and Batt, P. A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390–400.
PubMed |

Gardner, D. K. , Schoolcraft, W. B. , Wagley, L. , Schlenker, T. , Stevens, J. , and Hesla, J. (1998). A prospective randomized trial of blastocyst culture and transfer in in vitro fertilization. Hum. Reprod. 13, 3434–3440.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gardner, D. K. , Pool, T. B. , and Lane, M. (2000). Embryo nutrition and energy metabolism and its relationship to embryo growth, differentiation, and viability. Semin. Reprod. Med. 18, 205–218.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gardner, D. K. , Hewitt, E. A. , and Lane, M. (2003a). Ammonium alters gene expression and imprinting of H19 in culture mouse blastocysts. Fertil. Steril. 80(Suppl. 3), S256.


Gardner, D. K. , Hewitt, E. A. , and Lane, M. (2003b). Sequential media used in human IVF do not affect imprinting of the H19 gene in mouse blastocysts. Fertil. Steril. 80(Suppl. 3), S256.


Gardner, D. K. , Hewitt, E. A. , and Linck, D. (2004a). Diet affects embryo imprinting and fetal development. Hum. Reprod. 19(Suppl. 1), i27.


Gardner, D. K. , Stilley, K. , and Lane, M. (2004b). High protein diet inhibits inner cell mass formation and increases apoptosis in mouse blastocysts developed in vivo by increasing the levels of ammonium in the reproductive tract. Reprod. Fertil. Dev. 16, 190.
Crossref | GoogleScholarGoogle Scholar |

Gosden, R. , Trasler, J. , Lucifero, D. , and Faddy, M. (2003). Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 361, 1975–1977.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Guerin, P. , El Mouatassim, S. , and Menezo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hagemann, L. J. , Weilert, L. L. , Beaumont, S. E. , and Tervit, H. R. (1998). Development of bovine embryos in single in vitro production (sIVP) systems. Mol. Reprod. Dev. 51, 143–147.
PubMed |

Harvey, A. J. , Kind, K. L. , Pantaleon, M. , Armstrong, D. T. , and Thompson, J. G. (2004). Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod. 71, 1108–1119.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Heeneman, S. , Deutz, N. E. , and Buurman, W. A. (1993). The concentrations of glutamine and ammonia in commercially available cell culture media. J. Immunol. Methods 166, 85–91.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hewitt, E. A. , Rawlinson, C. A. , Stilley, K. S. , Lane, M. , and Gardner, D. K. (2003). Culture effects on mouse embryo gene expression are limited to the first three cleavage divisions. Theriogenology 59, 420.


Ho, Y. , Doherty, A. S. , and Schultz, R. M. (1994). Mouse preimplantation embryo development in vitro: effect of sodium concentration in culture media on RNA synthesis and accumulation and gene expression. Mol. Reprod. Dev. 38, 131–141.
PubMed |

Ho, Y. , Wigglesworth, K. , Eppig, J. J. , and Schultz, R. M. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238.
PubMed |

Huntriss, J. , Hinkins, M. , Oliver, B. , Harris, S. E. , Beazley, J. C. , Rutherford, A. J. , Gosden, R. G. , Lanzendorf, S. E. , and Picton, H. M. (2004). Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol. Reprod. Dev. 67, 323–336.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Karagenc, L. , Sertkaya, Z. , Ciray, N. , Ulug, U. , and Bahceci, M. (2004). Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod. Biomed. Online 9, 409–417.
PubMed |

Khosla, S. , Dean, W. , Brown, D. , Reik, W. , and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–926.
PubMed |

Killian, J. K. , Nolan, C. M. , Wylie, A. A. , Li, T. , Vu, T. H. , Hoffman, A. R. , and Jirtle, R. L. (2001). Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum. Mol. Genet. 10, 1721–1728.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lambert, R. D. (2003). Safety issues in assisted reproductive technology: aetiology of health problems in singleton ART babies. Hum. Reprod. 18, 1987–1991.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lane, M. , and Gardner, D. K. (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 102, 305–312.
PubMed |

Lane, M. , and Gardner, D. K. (2000a). Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol. Reprod. 62, 16–22.
PubMed |

Lane, M. , and Gardner, D. K. (2000b). Regulation of ionic homeostasis by mammalian embryos. Semin. Reprod. Med. 18, 195–204.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lane, M. , and Gardner, D. K. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lane, M. , and Gardner, D. K. (2005). Understanding the cellular disruptions during early embryo development that perturb viability and fetal development. Reprod. Fertil. Dev. 17, 371–378.


Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
PubMed |

Lonergan, P. , Rizos, D. , Gutierrez-Adan, A. , Moreira, P. M. , Pintado, B. , de la Fuente, J. , and Boland, M. P. (2003). Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol Reprod. 69, 1424–1431.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lozano, J. M. , Lonergan, P. , Boland, M. P. , and O’Callaghan, D. (2003). Influence of nutrition on the effectiveness of superovulation programmes in ewes: effect on oocyte quality and post-fertilization development. Reproduction 125, 543–553.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lucifero, D. , Mertineit, C. , Clarke, H. J. , Bestor, T. H. , and Trasler, J. M. (2002). Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79, 530–538.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lucifero, D. , Chaillet, J. R. , and Trasler, J. M. (2004). Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum. Reprod. Update 10, 3–18.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ludwig, M. , Katalinic, A. , Gross, S. , Varon, R. , and Horsthemke, B. (2004). Increased prevalence of imprinting defects in Angelman Syndrome (AS) patients born to infertile couples. Fertil. Steril. 82(Suppl. 2), S49.
Crossref | GoogleScholarGoogle Scholar |

Maher, E. R. , Afnan, M. , and Barratt, C. L. (2003). Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum. Reprod. 18, 2508–2511.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Marques, C. J. , Carvalho, F. , Sousa, M. , and Barros, A. (2004). Genomic imprinting in disruptive spermatogenesis. Lancet 363, 1700–1702.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McEvoy, T. G. , Robinson, J. J. , Aitken, R. P. , Findlay, P. A. , and Robertson, I. S. (1997). Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim. Reprod. Sci. 47, 71–90.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McKiernan, S. H. , and Bavister, B. D. (1998). Gonadotrophin stimulation of donor females decreases post-implantation viability of cultured one-cell hamster embryos. Hum. Reprod. 13, 724–729.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Menezo, Y. J. , Chouteau, J. , Torello, J. , Girard, A. , and Veiga, A. (1999). Birth weight and sex ratio after transfer at the blastocyst stage in humans. Fertil. Steril. 72, 221–224.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Menke, T. M. , and McLaren, A. (1970). Mouse blastocysts grown in vivo and in vitro: carbon dioxide production and trophoblast outgrowth. J. Reprod. Fertil. 23, 117–127.
PubMed |

Mercader, A. , Garcia-Velasco, J. A. , Escudero, E. , Remohi, J. , Pellicer, A. , and Simon, C. (2003). Clinical experience and perinatal outcome of blastocyst transfer after coculture of human embryos with human endometrial epithelial cells: a 5-year follow-up study. Fertil. Steril. 80, 1162–1168.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Niemitz, E. L. , and Feinberg, A. P. (2004). Epigenetics and assisted reproductive technology: a call for investigation. Am. J. Hum. Genet. 74, 599–609.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Olivennes, F. , Fanchin, R. , Ledee, N. , Righini, C. , Kadoch, I. J. , and Frydman, R. (2002). Perinatal outcome and developmental studies on children born after IVF. Hum. Reprod. Update 8, 117–128.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reed, L. C. , Gardner, D. K. , and Lane, M. (2003). In vivo rates of mouse embryo development can be attained in vitro. Theriogenology 59, 349.


Reik, W. , Dean, W. , and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rinaudo, P. , and Schultz, R. M. (2004). Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128, 301–311.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rizos, D. , Gutierrez-Adan, A. , Perez-Garnelo, S. , de la Fuente, J. , Boland, M. P. , and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–243.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schieve, L. A. , Rasmussen, S. A. , Buck, G. M. , Schendel, D. E. , Reynolds, M. A. , and Wright, V. C. (2004). Are children born after assisted reproductive technology at increased risk for adverse health outcomes? Obstet. Gynecol. 103, 1154–1163.
PubMed |

Shi, W. , and Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–334.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sinawat, S. , Hsaio, W. C. , Flockhart, J. H. , Kaufman, M. H. , Keith, J. , and West, J. D. (2003). Fetal abnormalities produced after preimplantation exposure of mouse embryos to ammonium chloride. Hum. Reprod. 18, 2157–2165.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tachataki, M. , Winston, R. M. , and Taylor, D. M. (2003). Quantitative RT-PCR reveals tuberous sclerosis gene, TSC2, mRNA degradation following cryopreservation in the human preimplantation embryo. Mol. Hum. Reprod. 9, 593–601.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tervit, H. R. , Whittingham, D. G. , and Rowson, L. E. (1972). Successful culture in vitro of sheep and cattle ova. J. Reprod. Fertil. 30, 493–497.
PubMed |

Thompson, J. G. , Gardner, D. K. , Pugh, P. A. , McMillan, W. H. , and Tervit, H. R. (1995). Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol. Reprod. 53, 1385–1391.
PubMed |

Thompson, J. G. , Kind, K. L. , Roberts, C. T. , Robertson, S. A. , and Robinson, J. S. (2002). Epigenetic risks related to assisted reproductive technologies: short- and long-term consequences for the health of children conceived through assisted reproduction technology: more reason for caution? Hum. Reprod. 17, 2783–2786.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van der Auwera, I. , and D’Hooghe, T. (2001). Superovulation of female mice delays embryonic and fetal development. Hum. Reprod. 16, 1237–1243.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Walker, S. K. , Heard, T. M. , and Seamark, R. F. (1992). In vitro culture of sheep embryos without co-culture: successes and perspectives. Theriogenology 37, 111–126.
Crossref | GoogleScholarGoogle Scholar |

Wang, J. X. , Norman, R. J. , and Kristiansson, P. (2002). The effect of various infertility treatments on the risk of preterm birth. Hum. Reprod. 17, 945–949.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Whitten, W. K. (1971). Nutrient requirements for the culture of preimplantation embryos in vitro. Adv. Biosci. 6, 129–139.


Winston, R. M. , and Hardy, K. (2002). Are we ignoring potential dangers of in vitro fertilization and related treatments? Nat. Med. 8(Suppl.), S14–S18.
PubMed |

Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 8–18.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wrenzycki, C. , De Sousa, P. , Overstrom, E. W. , Duby, R. T. , Herrmann, D. , Watson, A. J. , Niemann, H. , O’Callaghan, D. , and Boland, M. P. (2000). Effects of superovulated heifer diet type and quantity on relative mRNA abundances and pyruvate metabolism in recovered embryos. J. Reprod. Fertil. 118, 69–78.
PubMed |

Wrenzycki, C. , Herrmann, D. , Keskintepe, L. , Martins, A. , Sirisathien, S. , Brackett, B. , and Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893–901.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Young, L. E. , and Beaujean, N. (2004). DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim. Reprod. Sci. 82–83, 61–78.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Young, L. E. , Fernandes, K. , McEvoy, T. G. , Butterwith, S. C. , Gutierrez, C. G. , Carolan, C. , Broadbent, P. J. , Robinson, J. J. , Wilmut, I. , and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
Crossref | GoogleScholarGoogle Scholar | PubMed |