Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Control of glycolysis in mature boar spermatozoa: effect of pH in vitro

A. R. Jones A B and D. E. Connor A
+ Author Affiliations
- Author Affiliations

A School of Molecular and Microbial Biosciences, Discipline of Biochemistry, The University of Sydney, Sydney, NSW 2006, Australia.

B To whom correspondence should be addressed. email: a.jones@mmb.usyd.edu.au

Reproduction, Fertility and Development 16(3) 319-324 https://doi.org/10.1071/RD02103
Submitted: 23 December 2002  Accepted: 4 March 2004   Published: 26 April 2004

Abstract

The glycolytic pathway in boar sperm is sensitive to pH, which decreases as lactate is produced from either glucose or fructose in vitro. The build up of lactate appears to be due to the saturation of mitochondrial lactate transporters, which causes the cytoplasmic pH to fall. Phosphofructokinase has been shown to be sensitive to this drop in pH rather than to the build up of lactate ions or ATP, thereby controlling the rate of glycolysis in vitro.


Acknowledgments

This work was supported by the New South Wales Government Employees Medical Research Fund. The assistance of the employees of the F. C. Nichols Abattoir (Woy Woy, NSW, Australia) with the collection of boar tissue is gratefully acknowledged.


References

Amir, D. , and Schindler, H. (1967). Influence of lactate on the rates of fructolysis and respiration in ram spermatozoa. J. Reprod. Fertil. 14, 121–127.
PubMed |

Atkinson, D. E. , and Walton, G. M. (1967). Adenosine triphosphate conservation in metabolic regulation. J. Biol. Chem. 242, 3239–3241.
PubMed |

Babcock, D. F. , Rufo, G. A. , and Lardy, H. A. (1983). Potassium-dependent increases in cytosolic pH stimulate metabolism and motility of mammalian sperm. Proc. Natl Acad. Sci. USA 80, 1327–1331.
PubMed |

Berg, J. M., Tymoczko, J. L., and  Stryer, L. (2002). ‘Biochemistry’, 5th edn. (Freeman: New York, USA.)

Beutler, H.-O. (1984). d-Fructose. In ‘Methods of Enzymatic Analysis’, 3rd edn. (Ed H. U. Bergmeyer)  pp. 321–327. (Verlag Chemie: Weinheim, Germany.)

Cooney, S. J. , and Jones, A. R. (1988). Inhibitory effects of (S)-3-chlorolactaldehyde on the metabolic activity of boar spermatozoa in vitro.  J. Reprod. Fertil. 82, 309–317.
PubMed |

Dawson, A. G. (1977). Contribution of pH-sensitive metabolic processes to pH homeostasis in isolated rat kidney tubules. Biochim. Biophys. Acta 499, 85–98.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gandhi, K. K. , and Anand, S. R. (1982). Regulation of glycolysis/fructolysis in buffalo spermatozoa. J. Reprod. Fertil. 64, 145–150.
PubMed |

Gatti, J.-L. , Chevrier, C. , Paquignon, M. , and Dacheux, J.-L. (1993). External ionic conditions, internal pH and motility of ram and boar spermatozoa. J. Reprod. Fertil. 98, 439–449.
PubMed |

Harrison, R. A. P. (1971). Glycolytic enzymes in mammalian spermatozoa. Activities and stabilities of hexokinase and phosphofructokinase in various fractions from sperm homogenates. Biochem. J. 124, 741–750.
PubMed |

Holtz, W. , and Smidt, D. (1976). The fertilising capacity of epididymal spermatozoa in the pig. J. Reprod. Fertil. 46, 227–229.
PubMed |

Hoskins, D. D. , Stephens, D. T. , and Casillas, E. R. (1971). Enzymic control of fructolysis in primate spermatozoa. Biochim. Biophys. Acta 237, 227–238.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jaworek, D. and  Welsch, J. (1985). Adenosine 5'-triphosphate: UV method with phosphoglycerate kinase. In ‘Methods of Enzymatic Analysis’, 3rd edn. (Ed H. U. Bergmeyer.)  pp. 340–345. (Verlag Chemie: Weinheim, Germany.)

Jaworek, D. and  Welsch, J. (1985). Adenosine 5'-diphosphate and adenosine 5'-monophosphate: UV method. In ‘Methods of Enzymatic Analysis’, 3rd edn. (Ed H. U. Bergmeyer)  pp. 365–369. (Verlag Chemie: Weinheim, Germany.)

Jones, A. R. (1997a). Metabolism of lactate by mature boar spermatozoa. Reprod. Fertil. Dev. 9, 227–232.
PubMed |

Jones, A. R. (1997b). Metabolic activity of hypotonically treated mature boar spermatozoa. Reprod. Fertil. Dev. 9, 583–586.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jones, A. R. (1998). Chemical interference with sperm metabolic pathways. J. Reprod. Fertil. Suppl. 53, 227–234.
PubMed |

Jones, A. R. , and Chantrill, L. A. (1989). Oxidative metabolic activity of boar spermatozoa: a system for assessing anti-glycolytic activity of potential inhibitors in vitro.  Reprod. Fertil. Dev. 1, 357–367.
PubMed |

Jones, A. R. , and Connor, D. E. (2000). Fructose metabolism by mature boar spermatozoa. Reprod. Fertil. Dev. 12, 355–359.
PubMed |

Jones, A. R. , and Piccolo, F. (1999). Glycolytic enzyme activity in hypotonically treated boar spermatozoa. Reprod. Fertil. Dev. 11, 409–413.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jones, R. (1978). Comparative biochemistry of mammalian epididymal plasma. Comp. Biochem. Physiol. B. 61, 365–370.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kahana, S. E. , Lowry, O. H. , Schulz, D. W. , Passonneau, J. V. , and Crawford, E. J. (1960). The kinetics of phosphofructokinase. J. Biol. Chem. 235, 2178–2184.
PubMed |

Keyhani, E. , and Storey, B. T. (1973). Energy conservation capacity and morphological integrity of mitochondria in hypotonically treated rabbit epididymal spermatozoa. Biochim. Biophys. Acta 305, 557–569.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lang, G. (1984). i-(–)-Glycerol-3-phosphate. In ‘Methods of Enzymatic Analysis’, 3rd edn. (Ed H. U. Bergmeyer)  pp. 525–531. (Verlag Chemie: Weinheim, Germany.)

Lowry, O. H. , Roseborough, N. J. , Farr, A. L. , and Randall, R. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
PubMed |

Mann, T. and  Lutwak-Mann, C. (1981). Biochemistry of spermatozoa: chemical and functional correlations in ejaculated semen. Andrological aspects. In ‘Male Reproductive Function and Semen’.  pp. 195–268. (Springer-Verlag: Berlin, Germany.)

Michael, G. (1984). d-Glucose 6-phosphate and d-fructose 6-phosphate. In ‘Methods of Enzymatic Analysis’, 3rd edn. (Ed H. U. Bergmeyer)  pp. 191–198. (Verlag Chemie: Weinheim, Germany.)

Michael, G. (1984). d-Fructose 1,6-bisphosphate, dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate. In ‘Methods of Enzymatic Analysis’, 3rd edn. (Ed H. U. Bergmeyer)  pp. 342–350. (Verlag Chemie: Weinheim, Germany.)

Mulquiney, P. J. , and Kuchel, P. W. (1999). Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement. Biochem. J. 342, 581–596.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Peterson, R. N. , and Freund, M. (1969). Glycolysis by washed suspensions of human spermatozoa. Effect of substrate, substrate concentration, and changes in medium composition on the rate of glycolysis. Biol. Reprod. 1, 238–246.
PubMed |

Porter, K. E. , and Jones, A. R. (1982). The effect of the isomers of α-chlorohydrin and racemic β-chlorolactate on the rat kidney. Chem. Biol. Interact. 41, 95–104.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sols, A. and  Salas, M. L. (1966). Phosphofructokinase. In ‘Methods of Enzymology’, Vol. 9. (Ed W. A. Wood.)  pp. 436–442. (Academic Press: New York, USA.)

Spencer, T. L. , and Lehninger, A. L. (1976). l-Lactate transport in Ehrlich ascites–tumour cells. Biochem. J. 154, 405–414.
PubMed |

Stevenson, D. , and Jones, A. R. (1982). Inhibition of fructolysis in boar spermatozoa by the male antifertility agent (S)-α-chlorohydrin. Aust. J. Biol. Sci. 35, 595–605.
PubMed |

Stevenson, D , and Jones, A. R. (1985). Production of (S)-3-chlorolactaldehyde from (S)-α-chlorohydrin by boar spermatozoa and the inhibition of glyceraldehyde 3-phosphate dehydrogenase in vitro. J. Reprod. Fertil. 74, 157–165.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Trivedi, B. , and Danforth, W. H. (1966). Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241, 4110–4114.
PubMed |