Advances in Synchrotron X-ray Polycrystalline Diffraction
William Parrish
Australian Journal of Physics
41(2) 101 - 112
Published: 1988
Abstract
The advantages of synchrotron radiation for X-ray polycrystalline diffraction are illustrated by a number of examples. The plane wave parallel-beam X-ray optics uses a Si(lll) channel monochromator for easy wavelength selection and a set of long parallel slits to define the diffracted beam. The constant simple instrument function and the high resolution symmetrical profiles (FWHM 0.05") greatly simplify the data analysis and add a new dimension to profile broadening studies. The geometry permits uncoupling the 6-26 sample-detector relationship without changing the profile shape and makes possible new applications such as grazing angle incidence depth analysis of thin films. The same instrumentation is used for high resolution energy dispersive diffraction (BOD) by step-scanning the monochromator. The resolution is two orders of magnitude better than conventional BOD and can be used at high count rates. The easy wavelength selection yields diffraction patterns with the highest PI B and permits anomalous scattering studies.https://doi.org/10.1071/PH880101
© CSIRO 1988