Apparent absence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) in frogs in Malaita Province, Solomon Islands
Maasafi Alabai A B , Tommy Esau A B , Esau Kekeubata A B , Dorothy Esau A B , Jackson Waneagea A , Lamanai’a Lobotalau A , James Alick A , John Silas A , Ledison Solome A , Jimson Waneagea A , Kwai’ikwala Mousisi A , Timothy P. Cutajar C , Christopher D. Portway C , David J. MacLaren D and Jodi J. L. Rowley C E FA Kwainaa’isi Cultural Centre, Atoifi Postal Agency, East Kwaio, Malaita Province, Solomon Islands.
B Baru Conservation Alliance, Atoifi Postal Agency, East Kwaio, Malaita Province, Solomon Islands.
C Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW 2010, Australia.
D College of Medicine and Dentistry, James Cook University, Cairns, Qld 4870, Australia.
E Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Biological Sciences Building (D26), Randwick, NSW 2052, Australia.
F Corresponding author. Email: jodi.rowley@unsw.edu.au
Pacific Conservation Biology - https://doi.org/10.1071/PC20047
Submitted: 28 May 2020 Accepted: 19 October 2020 Published online: 13 November 2020
Journal Compilation © CSIRO 2020 Open Access CC BY-NC-ND
Abstract
A major driver of global biodiversity loss is disease. One of the most devastating wildlife diseases known is chytridiomycosis, which is caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis, and is implicated in population declines in over 500 frog species. Thought to originate in Asia, B. dendrobatidis now has a global distribution, likely due to human movement and trade. The pathogen has yet to be detected in Melanesia, but there have been few surveys for B. dendrobatidis in the region, and none in the Solomon Islands archipelago, a biogeographic region with a unique and culturally important frog fauna. We swabbed 200 frogs of eight species in three genera in lowland and highland sites in East Kwaio on the island of Malaita in the Solomon Islands. All frogs tested negative for the pathogen but it is possible that the pathogen is present despite non-detection, so further surveys for the pathogen are needed throughout the country. Despite this, it is safest to take a precautionary approach and assume that B. dendrobatidis has not yet been introduced to the Solomon Islands, and that naïve native amphibian populations may be at risk of decline if the pathogen is introduced. Protocols are needed to prevent the accidental import of infected frogs via tourism or in logging or mining equipment. Monitoring of frog populations near areas of high risk such as ports is also recommended. The frogs of the Solomon Islands archipelago are biologically unique and culturally significant, and protecting them from the potentially devastating impacts of B. dendrobatidis is vital.
keywords: amphibian, bacteria, biodiversity loss, biosecurity, chytridiomycosis, Cornufer guentheri, Cornufer guppyi, Cornufer hedigeri, Cornufer solomonis, Cornufer vertebralis, East Kwaio, frog, fungus, Litoria lutea, Litoria thesaurensis, Papurana krefftii, pathogen, Solomon Islands, wildlife disease.
References
Alabai, M., Esau, T., Kekeubata, E., Waneagea, J., MacLaren, D., Major, R., and Callaghan, C. (2019). First record of Solomons Nightjar Eurostopodus nigripennis for Malaita, with a description of its nest site. Bulletin of the British Ornithologists’ Club 139, 325–327.| First record of Solomons Nightjar Eurostopodus nigripennis for Malaita, with a description of its nest site.Crossref | GoogleScholarGoogle Scholar |
Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyatt, A. D., McDonald, K. R., and Hines, H. B. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences 95, 9031–9036.
| Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America.Crossref | GoogleScholarGoogle Scholar |
Bielby, J., Cooper, N., Cunningham, A., Garner, T. W., and Purvis, A. (2008). Predicting susceptibility to future declines in the world’s frogs. Conservation Letters 1, 82–90.
| Predicting susceptibility to future declines in the world’s frogs.Crossref | GoogleScholarGoogle Scholar |
Bower, D. S., Lips, K. R., Amepou, Y., Richards, S., Dahl, C., Nagombi, E., Supuma, M., Dabek, L., Alford, R. A., Schwarzkopf, L., and Ziembicki, M. (2019). Island of opportunity: can New Guinea protect amphibians from a globally emerging pathogen? Frontiers in Ecology and the Environment 17, 348–354.
| Island of opportunity: can New Guinea protect amphibians from a globally emerging pathogen?Crossref | GoogleScholarGoogle Scholar |
Bower, D. S., Jennings, C. K., Webb, R. J., Amepou, Y., Schwarzkopf, L., Berger, L., Alford, R. A., Georges, A., McKnight, D. T., Carr, L., and Nason, D. (2020). Disease surveillance of the amphibian chytrid fungus Batrachochytrium dendrobatidis in Papua New Guinea. Conservation Science and Practice 2020, e256.
| Disease surveillance of the amphibian chytrid fungus Batrachochytrium dendrobatidis in Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |
Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T., and Hyatt, A. D. (2004). Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60, 141–148.
| Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay.Crossref | GoogleScholarGoogle Scholar | 15460858PubMed |
Bradbury, R. S., Hii, S. F., Harrington, H., Speare, R., and Traub, R. (2017). Ancylostoma ceylanicum hookworm in the Solomon Islands. Emerging Infectious Diseases 23, 252.
| Ancylostoma ceylanicum hookworm in the Solomon Islands.Crossref | GoogleScholarGoogle Scholar | 28098526PubMed |
Briggs, C. J., Knapp, R. A., and Vredenburg, V. T. (2010). Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences 107, 9695–9700.
| Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians.Crossref | GoogleScholarGoogle Scholar |
Callaghan, C. T., Kekeubata, E., Waneagea, J., Alabai, M., Esau, T., MacLaren, D., and Major, R. E. (2019). A collaborative bird survey of East Kwaio, Malaita, Solomon Islands. Check List 15, 1119–1136.
| A collaborative bird survey of East Kwaio, Malaita, Solomon Islands.Crossref | GoogleScholarGoogle Scholar |
Clopper, C. J., and Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413.
| The use of confidence or fiducial limits illustrated in the case of the binomial.Crossref | GoogleScholarGoogle Scholar |
Dahl, C., Kiatik, I., Baisen, I., Bronikowski, E., Fleischer, R. C., Rotzel, N. C., Lock, J., Novotny, V., Narayan, E., and Hero, J. M. (2012). Batrachochytrium dendrobatidis not found in rainforest frogs along an altitudinal gradient of Papua New Guinea. The Herpetological Journal 22, 183–186.
DiRenzo, G. V., Grant, E., Longo, A., Che-Castaldo, C., Zamudio, K., and Lips, K. (2018). Imperfect pathogen detection from non‐invasive skin swabs biases disease inference. Methods in Ecology and Evolution 9, 380–289.
| Imperfect pathogen detection from non‐invasive skin swabs biases disease inference.Crossref | GoogleScholarGoogle Scholar |
Farrer, R. A., Weinert, L. A., Bielby, J., Garner, T. W., Balloux, F., Clare, F., Bosch, J., Cunningham, A. A., Weldon, C., du Preez, L. H., and Anderson, L. (2011). Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences 108, 18732–18736.
| Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage.Crossref | GoogleScholarGoogle Scholar |
Fisher, M. C., and Garner, T. W. J. (2007). The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biology Reviews 21, 2–9.
| The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species.Crossref | GoogleScholarGoogle Scholar |
Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., and Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186.
| Emerging fungal threats to animal, plant and ecosystem health.Crossref | GoogleScholarGoogle Scholar | 22498624PubMed |
Hyatt, A. D., Boyle, D. G., Olsen, V., Boyle, D. B., Berger, L., Obendorf, D., Dalton, A., Kriger, K., Heros, M., Hines, H., Phillott, R., Campbell, R., Marantelli, G., Gleason, F., and Coiling, A. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73, 175–192.
| Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 17330737PubMed |
Lavery, T., Kekeubata, E., Esau, T., Flannery, T., MacLaren, D., and Waneagea, J. (2018). Rat and bat hunt helped heal rift from colonial cruelty. Nature 563, 626.
| Rat and bat hunt helped heal rift from colonial cruelty.Crossref | GoogleScholarGoogle Scholar | 30487624PubMed |
Longcore, J. E., Pessier, A. P., and Nichols, D. K. (1999). Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91, 219–227.
| Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians.Crossref | GoogleScholarGoogle Scholar |
Mesquita, A. F., Lambertini, C., Lyra, M., Malagoli, L. R., James, T. Y., Toledo, L. F., Haddad, C. F., and Becker, C. G. (2017). Low resistance to chytridiomycosis in direct-developing amphibians. Scientific Reports 7, 1–7.
| Low resistance to chytridiomycosis in direct-developing amphibians.Crossref | GoogleScholarGoogle Scholar |
Narayan, E., Molinia, F., and Hero, J. M. (2011). Absence of invasive Chytrid fungus (Batrachochytrium dendrobatidis) in native Fijian ground frog (Platymantis vitiana) populations on Viwa-Tailevu, Fiji Islands. Acta Herpetologica 6, 261–266.
NHMRC (2013). Australian code for the care and use of animals for scientific purposes, 8th edn. (Canberra: National Health and Medical Research Council.)
O’hanlon, S. J., Rieux, A., Farrer, R. A., Rosa, G. M., Waldman, B., Bataille, A., Kosch, T. A., Murray, K. A., Brankovics, B., Fumagalli, M., and Martin, M. D. (2018). Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627.
| Recent Asian origin of chytrid fungi causing global amphibian declines.Crossref | GoogleScholarGoogle Scholar | 29748278PubMed |
Pili, A. N., Sy, E. Y., Diesmos, M. L. L., and Diesmos, A. C. (2019). Island hopping in a biodiversity hotspot archipelago: reconstructed invasion history and updated status and distribution of alien frogs in the Philippines. Pacific Science 73, 321–343.
| Island hopping in a biodiversity hotspot archipelago: reconstructed invasion history and updated status and distribution of alien frogs in the Philippines.Crossref | GoogleScholarGoogle Scholar |
Pikacha, P., Morrison, C., and Richards, S. (2008). ‘Frogs of the Solomon Islands.’ (Institute of Applied Sciences, University of the South Pacific: Suva, Fiji).
Pollard, E. M., Thaman, R., Brodie, G., and Morrison, C. (2015). Threatened biodiversity and traditional ecological knowledge: associated beliefs, customs and uses of herpetofauna among the ‘Are’Are on Malaita Island, Solomon Islands. Ethnobiology Letters 6, 99–1.
| Threatened biodiversity and traditional ecological knowledge: associated beliefs, customs and uses of herpetofauna among the ‘Are’Are on Malaita Island, Solomon Islands.Crossref | GoogleScholarGoogle Scholar |
Rebollar, E. A., Woodhams, D. C., LaBumbard, B., Kielgast, J. and Harris, R.N. (2017). Prevalence and pathogen load estimates for the fungus Batrachochytrium dendrobatidis are impacted by ITS DNA copy number variation. Diseases of Aquatic Organisms 123, 213–226.
Rowley, J. J. L. and Alford, R. A. (2009). Factors affecting interspecific variation in susceptibility to disease in amphibians. In ‘Amphibian biology. Vol. 8: Amphibian decline: diseases, parasites, maladies and pollution’. (Eds. H. Heatwole and J. W. Wilkinson.) Chapter 3, pp. 3053–3066. (Surrey Beatty & Sons: Chipping Norton, NSW, Australia.)
Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., Catenazzi, A., and De la Riva, I. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463.
| Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity.Crossref | GoogleScholarGoogle Scholar | 30923224PubMed |
Schloegel, L. M., Picco, A. M., Kilpatrick, A. M., Davies, A. J., Hyatt, A. D., and Daszak, P. (2009). Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biological Conservation 142, 1420–1426.
| Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana).Crossref | GoogleScholarGoogle Scholar |
Swei, A., Rowley, J. J. L., Rödder, D., Diesmos, M. L., Diesmos, A. C., Briggs, C. J., Brown, R., Cao, T. T., Cheng, T. L., Chong, R. A., and Han, B. (2011). Is chytridiomycosis an emerging infectious disease in Asia? PloS One 6, e23179.
| Is chytridiomycosis an emerging infectious disease in Asia?Crossref | GoogleScholarGoogle Scholar | 21887238PubMed |
Woodhams, D. C., and Alford, R. A. (2005). Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conservation Biology 19, 1449–1459.
| Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland.Crossref | GoogleScholarGoogle Scholar |