The prevalence and molecular characterisation of blood parasites infecting the vulnerable Tamarugo Conebill (Conirostrum tamarugense) and other birds in the Pampa del Tamarugal, Chile
Javier Martínez A D , Rodrigo A. Vásquez B , Alberto Marqués A , Alazne Díez-Fernández C and Santiago Merino BA Departamento de Biomedicina y Biotecnología, Área Parasitología, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, E-28871 Madrid, Spain.
B Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
C Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales – Centro Superior de Investigaciones Científicas, J. Gutiérrez Abascal 2, E-28006 Madrid, Spain.
D Corresponding author. Email: francisco.martinez@uah.es
Emu 116(3) 310-314 https://doi.org/10.1071/MU15090
Submitted: 2 June 2015 Accepted: 5 February 2016 Published: 13 April 2016
Abstract
Blood parasites exert significant selective pressure, which can alter population dynamics, and the introduction of new parasite lineages in a region could lead to the extinction of endemic avian species that have not coevolved with them. The avifauna of the Pampa del Tamarugal in the desert of Atacama, Chile, is highly depauperate, with two species accounting for the greatest numbers: the widespread Rufous-collared Sparrow (Zonotrichia capensis) and the endemic Tamarugo Conebill (Conirostrum tamarugense). We used molecular and microscopic methods to estimate the prevalence of haemoparasites in birds inhabiting the Pampa del Tamarugal. The molecular screening of the samples from the most common species indicated that the Tamarugo Conebill was only infected by parasites of the genus Leucocytozoon (prevalence 3.5%) and the Rufous-collared Sparrow was uninfected. Only two other bird species (of a total of seven) were infected, the House Sparrow (Passer domesticus), by Plasmodium relictum (prevalence 30%), and the Eared Dove (Zenaida auriculata), by Haemoproteus multipigmentatus (prevalence 100%). The occurrence of House Sparrows infected with the Plasmodium haplotype GRW4 (involved in Hawaiian bird extinctions) may entail the risk of potential host-switching, something particularly relevant for the conservation of the endemic and vulnerable Tamarugo Conebill.
Additional keywords: avian malaria, haplotype GRW4, host-switching, House Sparrow, Plasmodium, Leucocytozoon.
References
Arenas, J. (2013). Observatorio del clima durante el año 2012 en la Estación Experimental de Canchones, pampa del Tamarugal, comuna de Pozo Almonte, provincia del Tamarugal, región de Tarapacá. Facultad de recursos naturales renovables, Universidad Arturo Prat, Chile.Beadell, J. S., Ishtiaq, F., Covas, R., Melo, M., Warren, B. H., Atkinson, C. T., Bensch, S., Graves, G. R., Jhala, Y. V., Peirce, M. A., Rahmani, A. R., Fonseca, D. M., and Fleischer, R. C. (2006). Global phylogeographic limits of Hawaii’s avian malaria. Proceedings of the Royal Society B: Biological Sciences 273, 2935–2944.
| Global phylogeographic limits of Hawaii’s avian malaria.Crossref | GoogleScholarGoogle Scholar | 17015360PubMed |
BirdLife International (2012) Conirostrum tamarugense. The IUCN Red List of Threatened Species 2012: e.T22722099A38171800.
Clark, N. J., Clegg, S. M., and Lima, M. R. (2014). A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus:Haemosporida): new insights from molecular data. International Journal for Parasitology 44, 329–338.
| A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus:Haemosporida): new insights from molecular data.Crossref | GoogleScholarGoogle Scholar | 24556563PubMed |
Combes, C. (2005). ‘The Art of Being a Parasite.’ (University Chicago Press: London.)
Durrant, K. L., Beadell, J. S., Ishtiaq, F., Graves, G. R., Olson, S. L., Gering, E., Peirce, M. A., Milensky, C. M., Schmidt, B. K., Gebhard, C., and Fleischer, R. C. (2006). Avian hematozoa in South America: a comparison of temperate and tropical zones. Ornithological Monographs 60, 98–111.
| Avian hematozoa in South America: a comparison of temperate and tropical zones.Crossref | GoogleScholarGoogle Scholar |
Estades, C. F. (1995). Aves de la reserva nacional Pampa del Tamarugal. Boletín Chileno de Ornitología 2, 21–23.
Estades, C. F. (1996). Natural history and conservation status of the Tamarugo Conebill in northern Chile. Wilson Bulletin 108, 268–279.
Farias, M. E. M., Atkinson, C. T., LaPointe, D. A., and Jarvi, S. I. (2012). Analysis of the trap gene provides evidence for the role of elevation and vector abundance in the genetic diversity of Plasmodium relictum in Hawaii. Malaria Journal 11, 305.
| Analysis of the trap gene provides evidence for the role of elevation and vector abundance in the genetic diversity of Plasmodium relictum in Hawaii.Crossref | GoogleScholarGoogle Scholar |
González, C. R., Reyes, C., Rada, V., Jercic, M. I., Pavletic, C., and Parra, A. (2012). ‘Manual de Culícidos (Diptera:Culicidae) de la Zona Norte y Centro de Chile, Incluyendo Isla de Pascua.’ (Maval Impresores: Santiago, Chile.)
González, A. D., Lotta, I. A., García, L. F., Moncada, L. I., and Matta, N. E. (2015). Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data. Parasitology International 64, 48–59.
| Avian haemosporidians from Neotropical highlands: evidence from morphological and molecular data.Crossref | GoogleScholarGoogle Scholar | 25638289PubMed |
Greiner, E. C., Bennett, G. F., White, E. M., and Coombs, R. F. (1975). Distribution of the avian hematozoa of North America. Canadian Journal of Zoology 53, 1762–1787.
| Distribution of the avian hematozoa of North America.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287hsF2rtA%3D%3D&md5=fe50115519facddee75891d077e63d51CAS | 1212636PubMed |
Hajek, E. R., and Di Castri, F. (1975). ‘Bioclimatografía de Chile.’ (Universidad Católica de Chile Press: Santiago, Chile.)
Hellgren, O., Krizanauskiene, A., Hasselquist, D., and Bensch, S. (2011). Low haemosporidian diversity and one key-host species in a bird malaria community on a mid-Atlantic island (Sao Miguel, Azores). Journal of Wildlife Diseases 47, 849–859.
| Low haemosporidian diversity and one key-host species in a bird malaria community on a mid-Atlantic island (Sao Miguel, Azores).Crossref | GoogleScholarGoogle Scholar | 22102655PubMed |
Hellgren, O., Atkinson, C. T., Bensch, S., Albayrak, T., Dimitrov, D., Ewen, J. G., Kim, K. S., Lima, M. R., Martin, L., Palinauskas, V., Ricklefs, R., Sehgal, R. N. M., Valkiūnas, G., Tsuda, Y., and Marzal, A. (2015). Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography 38, 842–850.
| Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity.Crossref | GoogleScholarGoogle Scholar |
LaPointe, D. A., Goff, M. L., and Atkinson, C. T. (2010). Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i. Journal of Parasitology 96, 318–324.
| Thermal constraints to the sporogonic development and altitudinal distribution of avian malaria Plasmodium relictum in Hawai’i.Crossref | GoogleScholarGoogle Scholar | 20001096PubMed |
López-Calleja, M. V., and Estades, C. F. (1996). Natural history of the Tamarugo Conebill (Conirostrum tamarugense) during the breeding period: diet and habitat preferences. Revista Chilena de Historia Natural (Valparaiso, Chile) 69, 351–356.
Martínez, J., Martínez-de la Puente, J., Herrero, J., del Cerro, S., Lobato, E., Rivero-de Aguilar, J., Vásquez, R. A., and Merino, S. (2009). A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections. Parasitology 136, 713–722.
| A restriction site to differentiate Plasmodium and Haemoproteus infections in birds: on the inefficiency of general primers for detection of mixed infections.Crossref | GoogleScholarGoogle Scholar | 19416554PubMed |
Martínez, J., Vásquez, R. A., Venegas, C., and Merino, S. (2015). Molecular characterisation of haemoparasites in forest birds from Robinson Crusoe Island: is the Austral Thrush a potential threat to endemic birds? Bird Conservation International 25, 139–152.
| Molecular characterisation of haemoparasites in forest birds from Robinson Crusoe Island: is the Austral Thrush a potential threat to endemic birds?Crossref | GoogleScholarGoogle Scholar |
Marzal, A., Ricklefs, R. E., Valkiūnas, G., Albayrak, T., Arriero, E., Bonneaud, C., Czirják, G. A., Ewen, J., Hellgren, O., Horáková, D., Iezhova, T. A., Jensen, H., Krizanauskiene, A., Lima, R. M., de Lope, F., Magnussen, E., Martin, L. B., Møller, A. P., Palinauskas, V., Pap, P. L., Pérez-Tris, J., Sehgal, R. M. N., Soler, M., Szöllosi, E., Westerdahl, H., Zetindjiev, P., and Bensch, S. (2011). Diversity, loss, and gain of malaria parasites in a globally invasive bird. PLoS One 6, e21905.
| Diversity, loss, and gain of malaria parasites in a globally invasive bird.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsl2hu7s%3D&md5=9ec78536e59f3ad5f830be3fb3dfedf3CAS | 21779353PubMed |
Merino, S., and Potti, J. (1995). Mites and blowflies decrease growth and survival in nestling Pied Flycatchers. Oikos 73, 95–103.
| Mites and blowflies decrease growth and survival in nestling Pied Flycatchers.Crossref | GoogleScholarGoogle Scholar |
Merino, S., Potti, J., and Fargallo, J. A. (1997). Blood parasites of some passerine birds from central Spain. Journal of Wildlife Diseases 33, 638–641.
| Blood parasites of some passerine birds from central Spain.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szptlWqtQ%3D%3D&md5=54a8ff60dfd7ebec09f5bc19c42bbedcCAS | 9249714PubMed |
Merino, S., Moreno, J., Sanz, J. J., and Arriero, E. (2000). Are avian blood parasites pathogenic in the wild? A medication experiment in Blue Tits. Proceedings of the Royal Society B: Biological Sciences 267, 2507–2510.
| Are avian blood parasites pathogenic in the wild? A medication experiment in Blue Tits.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzjslSqtg%3D%3D&md5=5519293154f9c060197ed1d5e9a38762CAS | 11197126PubMed |
Merino, S., Moreno, J., Vásquez, R. A., Martínez, J., Sánchez-Monsálvez, I., Estades, C. F., Ippi, S., Sabat, P., Rozzi, R., and Mcgehee, S. (2008). Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness. Austral Ecology 33, 329–340.
| Haematozoa in forest birds from southern Chile: latitudinal gradients in prevalence and parasite lineage richness.Crossref | GoogleScholarGoogle Scholar |
Merino, S., Hennicke, J., Martínez, J., Ludynia, K., Torres, R., Work, T. M., Stroud, S., Masello, J. F., and Quillfeldt, P. (2012). Infection by Haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida:Haemoproteidae). Journal of Parasitology 98, 397.
| Infection by Haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida:Haemoproteidae).Crossref | GoogleScholarGoogle Scholar | 21992108PubMed |
Santiago-Alarcon, D., Rodríguez-Ferraro, A., Parker, P. G., and Ricklefs, R. E. (2014). Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds. Parasites & Vectors 7, 286.
| Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds.Crossref | GoogleScholarGoogle Scholar |
Sehgal, R. N. M. (2015). Manifold habitat effects on the prevalence and diversity of avian blood parasites. International Journal for Parasitology: Parasites and Wildlife 4, 421–430.
| Manifold habitat effects on the prevalence and diversity of avian blood parasites.Crossref | GoogleScholarGoogle Scholar |
Tompkins, D. M., and Gleeson, D. M. (2006). Relationship between avian malaria distribution and exotic invasive mosquito in New Zealand. Journal of the Royal Society of New Zealand 36, 51–62.
| Relationship between avian malaria distribution and exotic invasive mosquito in New Zealand.Crossref | GoogleScholarGoogle Scholar |
Valkiūnas, G. (2005). ‘Avian Malaria Parasites and Other Haemosporidia.’ (CRC Press: Boca Ratón, FL.)
Valkiūnas, G., Iezhova, T. A., Evans, E., Carlson, J. S., Martínez-Gómez, J. E., and Sehgal, R. N. M. (2013). Two new Haemoproteus species (Haemosporida:Haemoproteidae) from columbiform birds. Journal of Parasitology 99, 513–521.
| Two new Haemoproteus species (Haemosporida:Haemoproteidae) from columbiform birds.Crossref | GoogleScholarGoogle Scholar | 23240808PubMed |
van Riper, C. (1991). The impact of introduced vectors and avian malaria on insular passeriform bird populations in Hawaii. Bulletin of the Society of Vector Ecology 16, 59–83.
van Riper, C., van Riper, S. G., Goff, M. L., and Laird, M. (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56, 327–344.
| The epizootiology and ecological significance of malaria in Hawaiian land birds.Crossref | GoogleScholarGoogle Scholar |
Watson, M. J. (2013). What drives population-level effects of parasites? Meta-analysis meets life-history. International Journal for Parasitology: Parasites and Wildlife 2, 190–196.
| What drives population-level effects of parasites? Meta-analysis meets life-history.Crossref | GoogleScholarGoogle Scholar | 24533334PubMed |
Zimmerman, E. C. (1948a). ‘Insects of Hawaii. Vol. 1: Introduction.’ (University of Hawaii Press: Honolulu.)
Zimmerman, E. C. (1948b). ‘Insects of Hawaii. Vol. 2: Apterigota to Thysanoptera.’ (University of Hawaii Press: Honolulu.)