Trapped mountain waves during a light aircraft accident
T.J. Parker and T.P. Lane
Australian Meteorological and Oceanographic Journal
63(3) 377 - 389
Published: 2013
Abstract
On 31 July 2007 a fatal light aircraft crash occurred near Clonbinane, Victoria, Australia and the official investigation concluded that mountain wave turbulence was the likely cause. This study uses three-dimensional numerical modelling and linear wave theory to examine the dynamics of mountain waves during this turbulence event and their role in generating turbulence. Analysis of the observed environment and three-dimensional idealised simulations elucidate the occurrence of trapped mountain waves and their role in creating regions of enhanced turbulence in the vicinity of the aircraft accident. Specifically, these waves perturb layers of low dynamic stability in the upstream flow, promoting turbulence in those layers. A simple ensemble of these three-dimensional simulations is also used to assess the robustness of the model solutions and demonstrate the utility of highresolution ensembles for explicit mountain wave turbulence prediction.https://doi.org/10.1071/ES13027
© Commonwealth of Australia represented by the Bureau of Meterology 2013. This is an open access article distributed under the Creative Commons Attribution-NonCommerical-NoDerivatives 4.0 International License (CC BY-NC-ND).