Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Biodiversity, trait composition and ecological functioning: impacts of coastal urbanisation on subtropical mudflats

Navodha G. Dissanayake A B , Christopher L. J. Frid B and Bryony A. Caswell https://orcid.org/0000-0001-8488-0890 A C D
+ Author Affiliations
- Author Affiliations

A Environmental Futures Research Institute, Griffith University, Gold Coast, Parklands Drive, Qld 4222, Australia.

B School of Environment and Sciences, Griffith University, Gold Coast, Parklands Drive, Qld 4222, Australia.

C Department of Geography, Geology and Environment, University of Hull, Cottingham Road, Hull, East Riding of Yorkshire, HU6 7RX, UK.

D Corresponding author. Email: b.a.caswell@hull.ac.uk

Marine and Freshwater Research 71(9) 1043-1061 https://doi.org/10.1071/MF19242
Submitted: 16 July 2019  Accepted: 30 September 2019   Published: 7 January 2020

Abstract

The world’s coastlines have become heavily modified over the last century, with the adjacent natural habitats declining in biodiversity and health under increasing pressure from urbanisation. In this study we assessed the structure and biological traits of macrofaunal assemblages from 24 south-east Queensland mudflats in order to determine whether ecological functioning (e.g. primary production, nutrient cycling) and the delivery of ecosystem services was affected by urbanisation. This work represents the most comprehensive assessment of mudflat assemblages in the region to date. The mudflats contained 50 macrofaunal taxa and so were comparable to other local intertidal systems. Summer assemblages contained more species, more individuals and had differing taxonomic composition. When indexed as a proportion of subcatchment area, urbanisation did not correspond to a clear impact on macrofaunal composition; rather, the nature of the industry or activity was critical. Mudflats from subcatchments with industries producing organic wastes significantly differed from subcatchments with <1.3% cover of these industries. Functioning was conserved in mudflats experiencing current levels of enrichment, but this may decline with growing pressure from human populations. The results of this study illustrate that large-scale spatial data, such as from satellites, can be used to detect the cumulative effects of urbanisation when the pressures are highly resolved.

Additional keywords: benthos, community, ecosystem dynamics, intertidal, macrofauna, organic enrichment, south-east Queensland.


References

Barnes, R. S. K. (2017). Patterns of benthic invertebrate biodiversity in intertidal seagrass in Moreton Bay, Queensland. Regional Studies in Marine Science 15, 17–25.
Patterns of benthic invertebrate biodiversity in intertidal seagrass in Moreton Bay, Queensland.Crossref | GoogleScholarGoogle Scholar |

Barnes, R. S. K., and Farnon Ellwood, M. D. (2011). Macrobenthic assemblage structure in a cool-temperate intertidal dwarf eelgrass bed in comparison with those from lower latitudes. Biological Journal of the Linnean Society. Linnean Society of London 104, 527–540.
Macrobenthic assemblage structure in a cool-temperate intertidal dwarf eelgrass bed in comparison with those from lower latitudes.Crossref | GoogleScholarGoogle Scholar |

Barnes, R. S. K., and Hamylton, S. (2013). Abrupt transitions between macrobenthic faunal assemblages across seagrass bed margins. Estuarine, Coastal and Shelf Science 131, 213–223.
Abrupt transitions between macrobenthic faunal assemblages across seagrass bed margins.Crossref | GoogleScholarGoogle Scholar |

Beesley, P., Ross, G., and Glasby, C. (2000). ‘Polychaetes and Allies: The Southern Synthesis. Fauna of Australia. Volume 4A Polychaeta, Myzostomida, Pogonophora, Echiura, Sipuncula.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Bolam, S. G., and Eggleton, J. D. (2014). Macrofaunal production and biological traits: spatial relationships along the UK continental shelf. Journal of Sea Research 88, 47–58.
Macrofaunal production and biological traits: spatial relationships along the UK continental shelf.Crossref | GoogleScholarGoogle Scholar |

Bolam, S. G., Fernandes, T. F., and Huxham, M. (2002). Diversity, biomass, and ecosystem processes in the marine benthos. Ecological Monographs 72, 599–615.
Diversity, biomass, and ecosystem processes in the marine benthos.Crossref | GoogleScholarGoogle Scholar |

Borja, A., Franco, J., and Pérez, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40, 1100–1114.
A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments.Crossref | GoogleScholarGoogle Scholar |

Borja, A., Muxika, I., and Franco, J. (2003). The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. Marine Pollution Bulletin 46, 835–845.
The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts.Crossref | GoogleScholarGoogle Scholar | 12837302PubMed |

Brady, J. P., Ayoko, G. A., Martens, W. N., and Goonetilleke, A. (2014). Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Marine Pollution Bulletin 81, 248–255.
Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 24485297PubMed |

Bremner, J. (2008). Species’ traits and ecological functioning in marine conservation and management. Journal of Experimental Marine Biology and Ecology 366, 37–47.
Species’ traits and ecological functioning in marine conservation and management.Crossref | GoogleScholarGoogle Scholar |

Bremner, J., Rogers, S. I., and Frid, C. L. J. (2003a). Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Marine Ecology Progress Series 254, 11–25.
Assessing functional diversity in marine benthic ecosystems: a comparison of approaches.Crossref | GoogleScholarGoogle Scholar |

Bremner, J., Frid, C. L. J., and Rogers, S. I. (2003b). Assessing marine ecosystem health: the long-term effects of fishing on functional biodiversity in North Sea benthos. Aquatic Ecosystem Health & Management 6, 131–137.
Assessing marine ecosystem health: the long-term effects of fishing on functional biodiversity in North Sea benthos.Crossref | GoogleScholarGoogle Scholar |

Bremner, J., Rogers, S. I., and Frid, C. L. J. (2006). Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecological Indicators 6, 609–622.
Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA).Crossref | GoogleScholarGoogle Scholar |

Brown, J. R., Gowen, R. J., and McLusky, D. S. (1987). The effect of salmon farming on the benthos of a Scottish sea loch. Journal of Experimental Marine Biology and Ecology 109, 39–51.
The effect of salmon farming on the benthos of a Scottish sea loch.Crossref | GoogleScholarGoogle Scholar |

Buchanan, J. B., Sheader, M., and Kingston, P. B. (1978). Sources of variability in the benthic macrofauna off the south Northumberland coast, 1971–1976. Journal of the Marine Biological Association of the United Kingdom 58, 191–209.
Sources of variability in the benthic macrofauna off the south Northumberland coast, 1971–1976.Crossref | GoogleScholarGoogle Scholar |

Burton, E. D., Phillips, I. R., and Hawker, D. W. (2004). Trace metals and nutrients in bottom sediments of the Southport Broadwater, Australia. Marine Pollution Bulletin 48, 378–384.
Trace metals and nutrients in bottom sediments of the Southport Broadwater, Australia.Crossref | GoogleScholarGoogle Scholar | 14972591PubMed |

Caswell, B. A., and Coe, A. L. (2013). Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic anoxia. Geology 41, 1163–1166.
Primary productivity controls on opportunistic bivalves during Early Jurassic oceanic anoxia.Crossref | GoogleScholarGoogle Scholar |

Caswell, B. A., and Frid, C. L. J. (2017). Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event. Oecologia 183, 275–290.
Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event.Crossref | GoogleScholarGoogle Scholar | 27757544PubMed |

Caswell, B. A., Paine, M., and Frid, C. L. J. (2018). Seafloor ecological functioning over two decades of organic enrichment. Marine Pollution Bulletin 136, 212–229.
Seafloor ecological functioning over two decades of organic enrichment.Crossref | GoogleScholarGoogle Scholar | 30509801PubMed |

Cetina-Heredia, P., Roughan, M., Van Sebille, E., and Coleman, M. (2014). Long-term trends in the East Australian Current separation latitude and eddy driven transport. Journal of Geophysical Research – Oceans 119, 4351–4366.
Long-term trends in the East Australian Current separation latitude and eddy driven transport.Crossref | GoogleScholarGoogle Scholar |

Charvet, S., Kosmala, A., and Statzner, B. (1998). Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management. Archiv für Hydrobiologie 142, 415–432.
Biomonitoring through biological traits of benthic macroinvertebrates: perspectives for a general tool in stream management.Crossref | GoogleScholarGoogle Scholar |

Charvet, S., Statzner, B., Usseglio-Polatera, P., and Dumont, B. (2000). Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshwater Biology 43, 277–296.
Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe.Crossref | GoogleScholarGoogle Scholar |

Chevene, F., Doléadec, S., and Chessel, D. (1994). A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31, 295–309.
A fuzzy coding approach for the analysis of long-term ecological data.Crossref | GoogleScholarGoogle Scholar |

Clare, D. S., Robinson, L. A., and Frid, C. L. J. (2015). Community variability and ecological functioning: 40 years of change in the North Sea benthos. Marine Environmental Research 107, 24–34.
Community variability and ecological functioning: 40 years of change in the North Sea benthos.Crossref | GoogleScholarGoogle Scholar | 25876194PubMed |

Clark, G. F., and Johnston, E. L. (2016). ‘Coasts: Population Growth and Urban Development: Population growth.’ (Australian Government Department of the Environment and Energy: Canberra, ACT, Australia.)

Cloern, J. E., and Jassby, A. D. (2010). Patterns and scales of phytoplankton variability in estuarine–coastal ecosystems. Estuaries and Coasts 33, 230–241.
Patterns and scales of phytoplankton variability in estuarine–coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Conley, D. J., Bjorck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H. E. M., Mueller-Karulis, B., Nordberg, K., Norkko, A., Nuernberg, G., Pitkanen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss, M., Wulff, F., and Zillen, L. (2009). Hypoxia-related processes in the Baltic Sea. Environmental Science & Technology 43, 3412–3420.
Hypoxia-related processes in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |

Connell, D., and Bycroft, B. (1990). Occurrence and behaviour of toxicants. In ‘The Brisbane River: A Source-Book for the Future’. (Eds P. Davie, E. Stock, and D. L. Choy.) pp. 313–318. (Australian Littoral Society and Queensland Museum: Brisbane, Qld, Australia.)

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change 26, 152–158.
Changes in the global value of ecosystem services.Crossref | GoogleScholarGoogle Scholar |

Coutinho, M. S., and Bernadino, A. F. (2017). Spatial and seasonal changes in benthic macrofauna from two dissipative sandy beaches in eastern Brazil). Brazilian Journal of Oceanography 65, 666–677.
Spatial and seasonal changes in benthic macrofauna from two dissipative sandy beaches in eastern Brazil).Crossref | GoogleScholarGoogle Scholar |

Davie, P. J. F., and Phillips, J. A. (2010). Proceedings of the 13th International Marine Biological Workshop, the marine fauna and flora of Moreton Bay, Queensland, 7–25 February 2005, Dunwich, Qld, Australia. Memoirs of the Queensland Museum 54, 355–376.

de Juan, S., and Hewitt, J. (2014). Spatial and temporal variability in species richness in a temperate intertidal community. Ecography 37, 183–190.
Spatial and temporal variability in species richness in a temperate intertidal community.Crossref | GoogleScholarGoogle Scholar |

Department of Economic and Social Affairs of the United Nations Secretariat (2014). Concise report on the world population situation in 2014. Available at https://www.un.org/en/development/desa/population/publications/pdf/trends/Concise%20Report%20on%20the%20World%20Population%20Situation%202014/en.pdf [Verified 3 November 2019].

Department of Environment and Science (2019). Moreton Bay Ramsar internationally important wetland – facts and maps, Wetland Info. Available at https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/ramsar-wetland-moreton-bay/ [Verified 10 June 2019]

Department of Infrastructure Local Government and Planning (2016). Review of the South East Queensland regional plan. (Department of Infrastructure, Local Government and Planning), Queensland Government.) Available at http://www.dilgp.qld.gov.au/planning/regional-planning/review-of-the-south-east-queensland-regional-plan.html [Verified 9 June 2016].

Diaz, R. J., and Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929.
Spreading dead zones and consequences for marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 18703733PubMed |

Díaz, R. J., Solan, M., and Valente, R. M. (2004). A review of approaches for classifying benthic habitats and evaluating habitat quality Journal of Environmental Management 73, 165–181.
A review of approaches for classifying benthic habitats and evaluating habitat qualityCrossref | GoogleScholarGoogle Scholar | 15474734PubMed |

Dissanayake, N. G., Frid, C. L. J., Drylie, T. P., and Caswell, B. A. (2018). Ecological functioning of mudflats: global analysis reveals both regional differences and widespread conservation of functioning. Marine Ecology Progress Series 604, 1–20.
Ecological functioning of mudflats: global analysis reveals both regional differences and widespread conservation of functioning.Crossref | GoogleScholarGoogle Scholar |

Dittmann, S. (1996). Effects of macrobenthic burrows on infaunal communities in tropical tidal flats. Marine Ecology Progress Series 134, 119–130.
Effects of macrobenthic burrows on infaunal communities in tropical tidal flats.Crossref | GoogleScholarGoogle Scholar |

Dittmann, S. (2002). Benthic fauna in tropical tidal flats of Hinchinbrook Channel, NE Australia: diversity, abundance and their spatial and temporal variation. Wetlands Ecology and Management 10, 323–333.
Benthic fauna in tropical tidal flats of Hinchinbrook Channel, NE Australia: diversity, abundance and their spatial and temporal variation.Crossref | GoogleScholarGoogle Scholar |

Drylie, T. P., Lohrer, A. M., Needham, H. R., and Bulmer, R. H. (2018). Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity. Journal of Sea Research 142, 101–112.
Benthic primary production in emerged intertidal habitats provides resilience to high water column turbidity.Crossref | GoogleScholarGoogle Scholar |

Dunn, R. J. K., Lemckert, C. J., Teasdale, P. R., and Welsh, D. T. (2013). Macroinfauna dynamics and sediment parameters of a subtropical estuarine lake – Coombabah Lake (Southern Moreton Bay, Australia). Journal of Coastal Research 29, 156–167.
Macroinfauna dynamics and sediment parameters of a subtropical estuarine lake – Coombabah Lake (Southern Moreton Bay, Australia).Crossref | GoogleScholarGoogle Scholar |

Dunn, R. J., Waltham, N. J., Benfer, N. P., King, B. A., Lemckert, C. J., and Zigic, S. (2014). Gold Coast Broadwater: southern Moreton Bay, south-east Queensland (Australia). In ‘Estuaries of Australia in 2050 and Beyond’. (Ed. E. Wolanski.) pp. 93–109. (Springer: New York, NY, USA.)

Ecosystem Health Monitoring Program (2004). Ecosystem health monitoring program 2002–2003. Annual Technical Report, Moreton Bay Waterways and Catchments Partnership, Brisbane, Qld, Australia.

Ecosystem Health Monitoring Program (2017). ‘Ecosystem Health Monitoring Program: Estuarine–Marine EHMP Data.’ (National Research Infrastructure for Australia: Brisbane, Qld, Australia.)

Eertman, R. H. M., and Hailstone, T. S. (1988). Zonation of intertidal epifauna on jetty piles in Moreton Bay, Queensland. Journal of the Malacological Society of Australia 9, 11–18.
Zonation of intertidal epifauna on jetty piles in Moreton Bay, Queensland.Crossref | GoogleScholarGoogle Scholar |

Ellis, D. V., and Pattisina, L. A. (1990). Widespread neogastropod imposex: a biological indicator of global contamination. Marine Pollution Bulletin 21, 248–253.
Widespread neogastropod imposex: a biological indicator of global contamination.Crossref | GoogleScholarGoogle Scholar |

Equbal, J., Lakra, R. J., Savurirajan, M., Satyam, K., and Thiruchitrambalam, G. (2018). Testing performances of marine benthic biotic indices under the strong T seasonality in the tropical intertidal habitats, South Andaman, India. Marine Pollution Bulletin 135, 266–282.
Testing performances of marine benthic biotic indices under the strong T seasonality in the tropical intertidal habitats, South Andaman, India.Crossref | GoogleScholarGoogle Scholar | 30301038PubMed |

European Commission (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy (Water Framework Directive). Official Journal of the European Union – Legislation 327, 1–72.

European Commission (2008). Directive 2008/56/EC of the European Parliament and of the Council of the council establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union – Legislation 164, 19–40.

Eyre, B. D., and Maher, D. (2011). Mapping ecosystem processes and function across shallow seascapes. Continental Shelf Research 31, S162–S172.
Mapping ecosystem processes and function across shallow seascapes.Crossref | GoogleScholarGoogle Scholar |

Faulwetter, S., Markantonatou, V., Pavloudi, C., Papageorgiou, N., Keklikoglou, K., Chatzinikolaou, E., Pafilis, E., Chatzigeorgiou, G., Vasileiadou, K., and Dailianis, T. (2014). Polytraits: a database on biological traits of marine polychaetes. Biodiversity Data 2, e1024.
Polytraits: a database on biological traits of marine polychaetes.Crossref | GoogleScholarGoogle Scholar |

Ferguson, A. J., and Eyre, B. D. (2010). Carbon and nitrogen cycling in a shallow productive sub-tropical coastal embayment (Western Moreton Bay, Australia): the importance of pelagic–benthic coupling. Ecosystems 13, 1127–1144.
Carbon and nitrogen cycling in a shallow productive sub-tropical coastal embayment (Western Moreton Bay, Australia): the importance of pelagic–benthic coupling.Crossref | GoogleScholarGoogle Scholar |

Frid, C. L. J., and Caswell, B. A. (2017) ‘Marine Pollution.’ (Oxford University Press: Oxford, UK.)

Frid, C. L. J., Clark, R. A., and Hall, J. (1999). Long term changes in the benthos on a heavily fished ground off the NE coast of England. Marine Ecology Progress Series 188, 13–20.
Long term changes in the benthos on a heavily fished ground off the NE coast of England.Crossref | GoogleScholarGoogle Scholar |

Glasby, C., and Fauchald, K. (2003). POLiKEY: polychaete identification and information retrieval system, ver. 2. (Department of the Environment and Energy: Canberra, ACT, Australia.) Available at https://www.environment.gov.au/science/abrs/online-resources/polikey [Verified 31 October 2018].

Gray, J. (1979). Pollution-induced changes in populations. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 286, 545–561.
Pollution-induced changes in populations.Crossref | GoogleScholarGoogle Scholar |

Gray, J. S. (1992). Eutrophication in the sea. In ‘Marine Eutrophication and Population Dynamics’. (Eds G. Colombo, I. Ferrari, V. U. Ceccherelli, and R. Rossi.) pp. 3–13. (Olsen & Olsen: Fredensborg, Denmark.)

Gray, J. S., and Elliott, M. (2009). ‘Ecology of Marine Sediments: From Science to Management.’ (Oxford University Press: Oxford. UK.)

Gray, J. S., Clarke, K. R., Warwick, R. M., and Hobbs, G. (1990). Detecting the initial effects of pollution on marine benthos – an example from the Ekofisk and Eldfisk oilfields, North Sea. Marine Ecology Progress Series 66, 285–299.
Detecting the initial effects of pollution on marine benthos – an example from the Ekofisk and Eldfisk oilfields, North Sea.Crossref | GoogleScholarGoogle Scholar |

Grinham, A. R., Carruthers, T. J., Fisher, P. L., Udy, J. W., and Dennison, W. C. (2007). Accurately measuring the abundance of benthic microalgae in spatially variable habitats. Limnology and Oceanography, Methods 5, 119–125.
Accurately measuring the abundance of benthic microalgae in spatially variable habitats.Crossref | GoogleScholarGoogle Scholar |

Heip, C., Basford, D., Craeymeersch, J. A., Dewarumez, J.-M., Dorjes, J., de Wilde, P., Duineveld, G., Eleftheriou, A., Herman, P. M. J., Niermann, U., Kingston, P., Kunitzer, A., Rachor, E., Rumohr, H., Soetaert, K., and Soltwedel, T. (1992). Trends in biomass, density and diversity of North Sea macrofauna. ICES Journal of Marine Science 49, 13–22.
Trends in biomass, density and diversity of North Sea macrofauna.Crossref | GoogleScholarGoogle Scholar |

Heiri, O., Lotter, A. F., and Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101–110.
Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results.Crossref | GoogleScholarGoogle Scholar |

Herman, P. M. J., Middelburg, J. J., and Heip, C. H. R. (2001). Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project. Continental Shelf Research 21, 2055–2071.
Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project.Crossref | GoogleScholarGoogle Scholar |

Hutchings, P. (1998). Biodiversity and functioning of polychaetes in benthic sediments. Biodiversity and Conservation 7, 1133–1145.
Biodiversity and functioning of polychaetes in benthic sediments.Crossref | GoogleScholarGoogle Scholar |

Inglis, G. J., and Kross, J. E. (2000). Evidence for systemic changes in the benthic fauna of tropical estuaries as a result of urbanization. Marine Pollution Bulletin 41, 367–376.
Evidence for systemic changes in the benthic fauna of tropical estuaries as a result of urbanization.Crossref | GoogleScholarGoogle Scholar |

Jones, A. R., Watson-Russell, C. J., and Murray, A. (1986). Spatial patterns in the macrobenthic communities of the Hawkesbury Estuary, New South Wales. Marine and Freshwater Research 37, 521–543.
Spatial patterns in the macrobenthic communities of the Hawkesbury Estuary, New South Wales.Crossref | GoogleScholarGoogle Scholar |

Knights, A. M., Koss, R. S., and Robinson, L. A. (2013). Identifying common pressure pathways from a complex network of human activities to support ecosystem-based management. Ecological Applications 23, 755–765.
Identifying common pressure pathways from a complex network of human activities to support ecosystem-based management.Crossref | GoogleScholarGoogle Scholar | 23865227PubMed |

Korpinen, S., and Bonsdorff, E. (2015). Eutrophication and hypoxia: impacts of nutrient and organic enrichment. In ‘Marine Ecosystems’. (Eds T. P. Crowe and C. L. J. Frid.) pp. 202–243. (Cambridge University Press: Cambridge, UK.)

Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., and Banta, G. T. (2012). What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446, 285–302.
What is bioturbation? The need for a precise definition for fauna in aquatic sciences.Crossref | GoogleScholarGoogle Scholar |

Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J., and Todd, P. A. (2015). The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean and Coastal Management 103, 78–85.
The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study.Crossref | GoogleScholarGoogle Scholar |

Lockington, J. R., Albert, S., Fisher, P. L., Gibbes, B. R., Maxwell, P. S., and Grinham, A. R. (2017). Dramatic increase in mud distribution across a large sub-tropical embayment, Moreton Bay, Australia. Marine Pollution Bulletin 116, 491–497.
Dramatic increase in mud distribution across a large sub-tropical embayment, Moreton Bay, Australia.Crossref | GoogleScholarGoogle Scholar | 28040248PubMed |

Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., and Jackson, J. B. C. (2006). Depletion, degradation and recovery potential of estuaries and coastal seas. Science 312, 1806–1809.
Depletion, degradation and recovery potential of estuaries and coastal seas.Crossref | GoogleScholarGoogle Scholar | 16794081PubMed |

Lyons, M. B., Phinn, S. R., and Roelfsema, C. M. (2012). Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS Journal of Photogrammetry and Remote Sensing 71, 34–46.
Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Macdonald, T. A., Burd, B. J., Macdonald, V. I., and Van Roodselaar, A. (2010). ‘Taxonomic and Feeding Guild Classification for the Marine Benthic Macroinvertebrates of the Strait of Georgia, British Columbia.’ (Fisheries and Oceans Canada, Pêches et Océans Canada: Ottawa, ON, Canada.)

Mackey, A. P., Hodgkinson, M., and Nardella, R. (1992). Nutrient levels and heavy metals in mangrove sediments from the Brisbane River, Australia. Marine Pollution Bulletin 24, 418–420.
Nutrient levels and heavy metals in mangrove sediments from the Brisbane River, Australia.Crossref | GoogleScholarGoogle Scholar |

MarLIN (2006) BIOTIC – Biological Traits Information Catalogue. (Marine Biological Association of the United Kingdom: Plymouth, UK.) Available at http://www.marlin.ac.uk/biotic/ [Verified 1 December 2018].

McPhee, D. (2017) ‘Environmental History and Ecology of Moreton Bay.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Melo, K. R., Tagliaro, C. H., and Beasley, C. R. (2013). Seasonal changes in the subtidal benthic macrofauna of a mangrove coast. Journal of Coastal Research 65, 87–92.
Seasonal changes in the subtidal benthic macrofauna of a mangrove coast.Crossref | GoogleScholarGoogle Scholar |

Morelli, G., Gasparon, M., Fierro, D., Hu, W.-P., and Zawadzki, A. (2012). Historical trends in trace metal and sediment accumulation in intertidal sediments of Moreton Bay, southeast Queensland, Australia. Chemical Geology 300–301, 152–164.
Historical trends in trace metal and sediment accumulation in intertidal sediments of Moreton Bay, southeast Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., Clinton, N., Thau, D., and Fuller, R. A. (2019). The global distribution and trajectory of tidal flats. Nature 565, 222–225.
The global distribution and trajectory of tidal flats.Crossref | GoogleScholarGoogle Scholar | 30568300PubMed |

Naeem, S., and Li, S. B. (1997). Biodiversity enhances ecosystem reliability. Nature 390, 507–509.
Biodiversity enhances ecosystem reliability.Crossref | GoogleScholarGoogle Scholar |

Naeem, S., Duffy, A. E., and Zavaleta, E. (2012). The functions of biological diversity in an age of extinction. Science 336, 1401–1406.
The functions of biological diversity in an age of extinction.Crossref | GoogleScholarGoogle Scholar | 22700920PubMed |

Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding – a global assessment. PLoS One 10, e0118571.
Future coastal population growth and exposure to sea-level rise and coastal flooding – a global assessment.Crossref | GoogleScholarGoogle Scholar | 26551355PubMed |

Oug, E., Fleddum, A., Rygg, B., and Olsgard, F. (2012). Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a Fjord ecosystem. Journal of Experimental Marine Biology and Ecology 432–433, 94–105.
Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a Fjord ecosystem.Crossref | GoogleScholarGoogle Scholar |

Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., McArdle, D., McClenachan, L. E., Newman, M. J. H., Paredes, G., Warner, R. R., and Jackson, J. B. C. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958.
Global trajectories of the long-term decline of coral reef ecosystems.Crossref | GoogleScholarGoogle Scholar | 12920296PubMed |

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37, 637–669.
Ecological and evolutionary responses to recent climate change.Crossref | GoogleScholarGoogle Scholar |

Pearson, T. H., and Rosenberg, R. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology - an Annual Review 16, 229–311.

Pearson, T. H., and Rosenberg, R. (1986). Feast and famine: structuring factors in marine benthic communities. In ‘Organization of Communities: Past and Present’. (Eds J. H. R. Gee and P. S. Giller.) pp. 373–398. (Blackwell Scientific: Oxford, UK.)

Percival, J. B., and Lindsay, P. J. (1997). Measurements of physical properties of sediments. In ‘Physico-Chemical Analysis of Aquatic Sediments’. (Eds A. Mudroch, J. M. Azcue, and P. Mudroch.) pp. 7–38. (Lewis: Boca Raton, FL, USA.)

Pitt, K. A., Connolly, R. M., and Maxwell, P. (2009). Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades. Marine Pollution Bulletin 58, 573–580.
Redistribution of sewage-nitrogen in estuarine food webs following sewage treatment upgrades.Crossref | GoogleScholarGoogle Scholar | 19138774PubMed |

Poiner, I. (1977). Microvariation in the fauna of a sublittoral sand bank, Moreton Bay, Queensland. Australian Journal of Ecology 2, 297–308.
Microvariation in the fauna of a sublittoral sand bank, Moreton Bay, Queensland.Crossref | GoogleScholarGoogle Scholar |

Queirós, A. M., Birchenough, S. N., Bremner, J., Godbold, J. A., Parker, R. E., Romero-Ramirez, A., Reiss, H., Solan, M., Somerfield, P. J., and Colen, C. (2013). A bioturbation classification of European marine infaunal invertebrates. Ecology and Evolution 3, 3958–3985.
A bioturbation classification of European marine infaunal invertebrates.Crossref | GoogleScholarGoogle Scholar | 24198953PubMed |

Rabalais, N. N., Diaz, R. J., Levin, L. A., Turner, R. E., Gilbert, D., and Zhang, J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619.
Dynamics and distribution of natural and human-caused hypoxia.Crossref | GoogleScholarGoogle Scholar |

Rafaelli, D., and Hawkins, S. J. (2012). ‘Intertidal Ecology.’ (Kluwer Academic Publishers: Dordrecht, Netherlands.)

Rainer, S. (1981). Temporal patterns in the structure of macrobenthic communities of an Australian estuary. Estuarine, Coastal and Shelf Science 13, 597–620.
Temporal patterns in the structure of macrobenthic communities of an Australian estuary.Crossref | GoogleScholarGoogle Scholar |

Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: the barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Resources 7, 355–364.

Reid, W. V., Mooney, H. A., Cropper, A., Capistrano, D., Carpenter, S. R., Chopra, K., Dasgupta, P., Dietz, T., Duraiappah, A. K., Hassan, R., Leemans, R. K. R., May, R. M., McMichael, A. J., Pingali, P., Samper, C., Scholes, R., Watson, R. T., Zakri, A. H., Shidong, Z., Ash, N. J., Bennett, E., Kumar, P., Lee, M. J., Raudsepp-Hearne, C., Simons, H., Thonell, J., and Zurek, M. B. MA (2005). Ecosystems and human well-being: synthesis. Millennium ecosystem assessment. (Eds J. Sarukhán, A. Whyte and MA Board of Review Editors). Available at https://www.millenniumassessment.org/documents/document.356.aspx.pdf [Verified 3 November 2019].

Reiss, H., and Kröncke, I. (2005). Seasonal variability of infaunal community structures in three areas of the North Sea under different environmental conditions. Estuarine, Coastal and Shelf Science 65, 253–274.
Seasonal variability of infaunal community structures in three areas of the North Sea under different environmental conditions.Crossref | GoogleScholarGoogle Scholar |

Rice, J., Arvanitidis, C., Borja, A., Frid, C., Hiddink, J. G., Krause, J., Lorance, P., Ragnarsson, S. A., Skold, M., Trabucco, B., Enserink, L., and Norkko, A. (2012). Indicators for sea-floor integrity under the European marine strategy framework directive. Ecological Indicators 12, 174–184.
Indicators for sea-floor integrity under the European marine strategy framework directive.Crossref | GoogleScholarGoogle Scholar |

Ritchie, R. J. (2008). Universal chlorophyll equations for estimating chlorophylls-a, -b, -c, and -d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents. Photosynthetica 46, 115–126.
Universal chlorophyll equations for estimating chlorophylls-a, -b, -c, and -d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents.Crossref | GoogleScholarGoogle Scholar |

Rosenberg, R. (1976). Benthic faunal dynamics during succession following pollution abatement in a Swedish estuary. Oikos 27, 414–427.
Benthic faunal dynamics during succession following pollution abatement in a Swedish estuary.Crossref | GoogleScholarGoogle Scholar |

Savage, C., Elmgren, R., and Larsson, U. (2002). Effects of sewage-derived nutrients on an estuarine macrobenthic community. Marine Ecology Progress Series 243, 67–82.
Effects of sewage-derived nutrients on an estuarine macrobenthic community.Crossref | GoogleScholarGoogle Scholar |

Seto, K. C., Fragkias, M., Güneralp, B., and Reilly, M. K. (2011). A meta-analysis of global urban land expansion. PLoS One 6, e23777.
A meta-analysis of global urban land expansion.Crossref | GoogleScholarGoogle Scholar | 21876770PubMed |

Snelgrove, P. V. (1997). The importance of marine sediment biodiversity in ecosystem processes. Ambio 26, 578–583.

Stephenson, W., Williams, W. T., and Lance, G. N. (1970). The macrobenthos of Moreton Bay. Ecological Monographs 40, 459–494.
The macrobenthos of Moreton Bay.Crossref | GoogleScholarGoogle Scholar |

Sunday, J. M., Bates, A. E., and Dulvy, N. K. (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London – B. Biological Sciences 278, 1823–1830.
Global analysis of thermal tolerance and latitude in ectotherms.Crossref | GoogleScholarGoogle Scholar |

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., and Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia. Supplementum 101, 133–164.
Heavy metal toxicity and the environment.Crossref | GoogleScholarGoogle Scholar |

United Nations (2017). Factsheet, people and oceans. In ‘The Ocean Conference’, 5–9 June 2019, New York, NY, USA. (UN: New York, NY, USA.) Available at https://www.un.org/sustainabledevelopment/wp-content/uploads/2017/05/Ocean-fact-sheet-package.pdf [Verified 3 November 2019].

Vallet, J., Daniel, H., Beaujouan, V., Rozé, F., and Pavoine, S. (2010). Using biological traits to assess how urbanization filters plant species of small woodlands. Applied Vegetation Science 13, 412–424.
Using biological traits to assess how urbanization filters plant species of small woodlands.Crossref | GoogleScholarGoogle Scholar |

Vargas, J. A. (1987). The benthic community of an intertidal mud flat in the Gulf of Nicoya, Costa Rica. Description of the community. Revista de Biología Tropical 35, 299–316.

Villnäs, A., Norkko, J., Lukkari, K., Hewitt, J., and Norkko, A. (2012). Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning. PLoS One 7, e44920.
Consequences of increasing hypoxic disturbance on benthic communities and ecosystem functioning.Crossref | GoogleScholarGoogle Scholar | 23091592PubMed |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, J. R., Dennsion, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, R., Kendrick, G. A., Kenworthy, J., Short, F. T., and Williams, S. (2009). Accelerating loss of seagrass across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrass across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 19587236PubMed |

Winberg, P. C., Lynch, T. P., Murray, A., Jones, A. R., and Davis, A. R. (2007). The importance of spatial scale for the conservation of tidal flat macrobenthos: an example from New South Wales, Australia. Biological Conservation 134, 310–320.
The importance of spatial scale for the conservation of tidal flat macrobenthos: an example from New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., Jackson, J. B. C., Lotze, H. K., Micheli, F., Palumbi, S. R., Sala, E., Selkoe, K. A., Stachowicz, J. J., and Watson, R. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790.
Impacts of biodiversity loss on ocean ecosystem services.Crossref | GoogleScholarGoogle Scholar | 17082450PubMed |

Young, P., and Wadley, V. (1979). Distribution of shallow-water epibenthic macrofauna in Moreton Bay, Queensland, Australia. Marine Biology 53, 83–97.
Distribution of shallow-water epibenthic macrofauna in Moreton Bay, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |