Surface bypass as a means of protecting downstream-migrating fish: lack of standardised evaluation criteria complicates evaluation of efficacy
Elena-Maria Klopries A B E , Zhiqun Daniel Deng B C , Theresa U. Lachmann A , Holger Schüttrumpf A and Bradly A. Trumbo DA Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, Mies-van-der-Rohe-Straße 17, D-52056 Aachen, Germany.
B Pacific Northwest National Laboratory, Energy and Environment Directorate, 902 Battelle Boulevard, Richland, WA 99352, USA.
C Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061, USA.
D US Army Corps of Engineers, Walla Walla District, 201 North Third Avenue, Walla Walla, WA 99362-1876, USA.
E Corresponding author. Email: klopries@iww.rwth-aachen.de
Marine and Freshwater Research 69(12) 1882-1893 https://doi.org/10.1071/MF18097
Submitted: 13 March 2018 Accepted: 12 June 2018 Published: 18 September 2018
Abstract
Surface bypasses are downstream migration structures that can help reduce hydropower-induced damage to migrating fish. However, no comprehensive design concept that facilitates good surface bypass performance for a wide range of sites and species is available. This is why fish-passage efficiencies at recently built bypass structures vary widely between 0% and up to 97%. We reviewed 50 surface bypass performance studies and existing guidelines for salmonids, eels and potamodromous species to identify crucial design criteria for surface bypasses employed in North America, Europe and Australia. Two-tailed Pearson correlation of bypass efficiency and bypass design criteria shows that bypass entrance area (r = 0.3300, P = 0.0036) and proportion of inflow to the bypass (r = 0.3741, P = 0.0032) are the most influential parameters on bypass efficiency. However, other parameters such as guiding structures (P = 0.2181, ordinary Student’s t-test) and trash-rack spacing (r = –0.1483, P = 0.3951, Spearman correlation), although not statistically significant, have been shown to have an effect on efficiency in some studies. The use of different performance criteria and efficiency definitions for bypass evaluation hampers direct comparison of studies and, therefore, deduction of design criteria. To enable meta-analyses and improve bypass design considerations, we suggest a list of standardised performance parameters for bypasses that should be considered in future bypass-performance studies.
Additional keywords: bypass effectiveness, bypass efficiency, downstream migration.
References
Aarestrup, K., and Koed, A. (2003). Survival of migrating sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) smolts negotiating weirs in small Danish rivers. Ecology Freshwater Fish 12, 169–176.| Survival of migrating sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) smolts negotiating weirs in small Danish rivers.Crossref | GoogleScholarGoogle Scholar |
Adams, N. S., Johnson, G. E., Rondorf, D. W., Anglea, S. M., and Wik, T. O. (2001). Biological evaluation of the behavioral guidance structure at Lower Granite Dam on the Snake River, Washington in 1998. In ‘American Fisheries Society Symposium 26’, 30–31 August 1999, Charlotte, NC, USA. (Ed. C. C. Coutant.) pp. 145–160. (American Fisheries Society: Bethesda, MD, USA.)
Adams, N. S., Plumb, J. M., Perry, R. W., and Rondorf, D. W. (2014). Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington. North American Journal of Fisheries Management 34, 576–594.
| Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington.Crossref | GoogleScholarGoogle Scholar |
Anderer, P., Dumont, P., Massmann, E., and Keuneke, R. (2012). Wasserkraftnutzung in Deutschland: Wasserrechtliche Aspekte, ökologisches Modernisierungspotenzial und Fördermöglichkeiten. Report number 22/2012, Umweltbundesamt, Dessau-Roßlau, Germany.
Arnekleiv, J. V., and Kraabøl, M. (1996). Migratory behaviour of adult fast-growing brown trout (Salmo trutta) in relation to water flow in a regulated Norwegian river. Regulated Rivers: Research and Management 12, 39–49.
| Migratory behaviour of adult fast-growing brown trout (Salmo trutta) in relation to water flow in a regulated Norwegian river.Crossref | GoogleScholarGoogle Scholar |
Arnekleiv, J. V., Kraabøl, M., and Museth, J. (2007). Efforts to aid downstream migrating brown trout (Salmo trutta L.) kelts and smolts passing a hydroelectric dam and a spillway. Hydrobiologia 582, 5–15.
| Efforts to aid downstream migrating brown trout (Salmo trutta L.) kelts and smolts passing a hydroelectric dam and a spillway.Crossref | GoogleScholarGoogle Scholar |
Axel, G. A., Hockersmith, E. E., Burke, B. J., Frick, K. E., Sandford, B. P., Muir, W. D., and Absolon, R. F. (2010). Passage behavior and survival of radio-tagged yearling and subyearling Chinook salmon and juvenile steelhead at Ice Harbor Dam, 2008. Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
Backman, T. W. H., and Evans, A. F. (2002). Gas bubble trauma incidence in adult salmonids in the Columbia River basin. North American Journal of Fisheries Management 22, 579–584.
| Gas bubble trauma incidence in adult salmonids in the Columbia River basin.Crossref | GoogleScholarGoogle Scholar |
Baumgartner, L. J., Reynoldson, N., and Gilligan, D. M. (2006). Mortality of larval Murray cod (Maccullochella peelii peelii) and golden perch (Macquaria ambigua) associated with passage through two types of low-head weirs. Marine and Freshwater Research 57, 187–191.
| Mortality of larval Murray cod (Maccullochella peelii peelii) and golden perch (Macquaria ambigua) associated with passage through two types of low-head weirs.Crossref | GoogleScholarGoogle Scholar |
Baumgartner, L. J., Boys, C. A., Stuart, I. G., and Zampatti, B. P. (2010). Evaluating migratory fish behaviour and fishway performance. Testing a combined assessment methodology. Australian Journal of Zoology 58, 154–164.
| Evaluating migratory fish behaviour and fishway performance. Testing a combined assessment methodology.Crossref | GoogleScholarGoogle Scholar |
Boubée, J. A. T., and Williams, E. K. (2006). Downstream passage of silver eels at a small hydroelectric facility. Fisheries Management and Ecology 13, 165–176.
| Downstream passage of silver eels at a small hydroelectric facility.Crossref | GoogleScholarGoogle Scholar |
Boubée, J. A. T., Jellyman, D., and Sinclair, C. (2008). Eel protection measures within the Manapouri hydro-electric power scheme, South Island, New Zealand. Hydrobiologia 609, 71–82.
| Eel protection measures within the Manapouri hydro-electric power scheme, South Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |
Boys, C. A., Robinson, W., Miller, B., Pflugrath, B., Baumgartner, L. J., Navarro, A., Brown, R., and Deng, Z. (2016). A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure. Journal of Fish Biology 88, 1677–1692.
| A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure.Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Carlson, T. J., Gingerich, A. J., Stephenson, J. R., Pflugrath, B. D., Welch, A. E., Langeslay, M. J., Ahmann, M. L., Johnson, R. L., Skalski, J. R., Seaburg, A. G., and Townsend, R. L. (2012). Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage. Transactions of the American Fisheries Society 141, 147–157.
| Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage.Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Colotelo, A. H., Pflugrath, B. D., Boys, C. A., Baumgartner, L. J., Deng, Z. D., Silva, L. G. M., Brauner, C. J., Mallen-Cooper, M., Phonekhampeng, O., Thorncraft, G., and Singhanouvong, D. (2014). Understanding barotrauma in fish passing hydro structures. A global strategy for sustainable development of water resources. Fisheries 39, 108–122.
| Understanding barotrauma in fish passing hydro structures. A global strategy for sustainable development of water resources.Crossref | GoogleScholarGoogle Scholar |
Calles, O., and Greenberg, L. A. (2009). Connectivity is a two-way street; the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25, 1268–1286.
| Connectivity is a two-way street; the need for a holistic approach to fish passage problems in regulated rivers.Crossref | GoogleScholarGoogle Scholar |
Calles, O., Olsson, I. C., Comoglio, C., Kemp, P. S., Blunden, L., Schmitz, M., and Greenberg, L. A. (2010). APPLIED ISSUES. Size-dependent mortality of migratory silver eels at a hydropower plant, and implications for escapement to the sea. Freshwater Biology 55, 2167–2180.
| APPLIED ISSUES. Size-dependent mortality of migratory silver eels at a hydropower plant, and implications for escapement to the sea.Crossref | GoogleScholarGoogle Scholar |
Calles, O., Karlsson, S., Hebrand, M., and Comoglio, C. (2012). Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant. Ecological Engineering 48, 30–37.
| Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant.Crossref | GoogleScholarGoogle Scholar |
Calles, O., Karlsson, S., Vezza, P., Comoglio, C., and Tielman, J. (2013). Success of a low-sloping rack for improving downstream passage of silver eels at a hydroelectric plant. Freshwater Biology 58, 2168–2179.
| Success of a low-sloping rack for improving downstream passage of silver eels at a hydroelectric plant.Crossref | GoogleScholarGoogle Scholar |
Castro-Santos, T. (2005). Optimal swim speeds for traversing velocity barriers: an analysis of volitional high-speed swimming behavior of migratory fishes. The Journal of Experimental Biology 208, 421–432.
| Optimal swim speeds for traversing velocity barriers: an analysis of volitional high-speed swimming behavior of migratory fishes.Crossref | GoogleScholarGoogle Scholar |
Castro-Santos, T., Cotel, A., and Webb, P. W. (2009). Fishway evaluations for better bioengineering: an integrative approach. In ‘Challenges for Diadromous Fishes in a Dynamic Global Environment: Proceedings of the International Symposium: Challenges for Diadromous Fishes in a Dynamic Global Environment’, 18–21 June 2007, Halifax, NS, Canada. (Ed. A. Haro.) pp. 557–575. (American Fisheries Society, Bethesda, MD, USA.)
Cotel, A. J., Webb, P. W., and Tritico, H. M. (2006). Do brown trout choose locations with reduced turbulence? Transactions of the American Fisheries Society 135, 610–619.
| Do brown trout choose locations with reduced turbulence?Crossref | GoogleScholarGoogle Scholar |
Croze, O. (2008). Assessment of downstream fish bypasses for assessment of downstream fish bypasses for Atlantic salmon smolts at four hydroelectric facilities on the Ariège River (France). In ‘American Fisheries Society Symposium’, 19–22 August 2002, Baltimore, MD, USA. (Eds S. V. Amaral, D. Mathur, and E. P. Taft.) pp. 123–140. (American Fisheries Society, Bethesda, MD, USA.).
Croze, O., Chanseau, M., and Larinier, M. (1999). Efficacité d’un exutoire de dévalaison pour smolts de saumon atlantique (Salmo salar L.) et comportement des poissons au niveau de l’aménagement hydroélectrique de Camon sur la Garonne. Bulletin Francais de la Peche et de la Pisciculture 353–354, 121–140.
| Efficacité d’un exutoire de dévalaison pour smolts de saumon atlantique (Salmo salar L.) et comportement des poissons au niveau de l’aménagement hydroélectrique de Camon sur la Garonne.Crossref | GoogleScholarGoogle Scholar |
Davies, J. K. (1988). A review of information relating to fish passage through turbines: implications to tidal power schemes. Journal of Fish Biology 33, 111–126.
| A review of information relating to fish passage through turbines: implications to tidal power schemes.Crossref | GoogleScholarGoogle Scholar |
Deng, Z., Guensch, G. R., McKinstry, C. A., Mueller, R. P., Dauble, D. D., and Richmond, M. C. (2005). Evaluation of fish-injury mechanisms during exposure to turbulent shear flow. Canadian Journal of Fisheries and Aquatic Sciences 62, 1513–1522.
| Evaluation of fish-injury mechanisms during exposure to turbulent shear flow.Crossref | GoogleScholarGoogle Scholar |
Deng, Z., Carlson, T. J., Ploskey, G. R., Richmond, M. C., and Dauble, D. D. (2007). Evaluation of blade-strike models for estimating the biological performance of Kaplan turbines. Ecological Modelling 208, 165–176.
| Evaluation of blade-strike models for estimating the biological performance of Kaplan turbines.Crossref | GoogleScholarGoogle Scholar |
Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (2006). Fish protection technologies and downstream fishways. Dimensioning, design, effectiveness inspection. July 2005. DWA, Hennef, Germany.
Dumont, U., and Hermens, G. (2012). Fischabstiegs- und Fischschutzanlagen an der Wasserkraftanlage ECI-Centrale in Roermond/Niederlande. Wasserwirtschaft 102, 89–92.
| Fischabstiegs- und Fischschutzanlagen an der Wasserkraftanlage ECI-Centrale in Roermond/Niederlande.Crossref | GoogleScholarGoogle Scholar |
Duncan, J. P., Deng, Z. D., Arnold, J. L., Fu, T., Trumbo, B. A., Carlson, T. J., and Zhou, D. (2018). Physical and ecological evaluation of a fish-friendly surface spillway. Ecological Engineering 110, 107–116.
| Physical and ecological evaluation of a fish-friendly surface spillway.Crossref | GoogleScholarGoogle Scholar |
Ebel, G. (2016). ‘Fischschutz und Fischabstieg an Wasserkraftanlagen; Handbuch Rechen- und Bypasssysteme. Mitteilungen aus dem Büro für Gewässerökologie und Fischereibiologie 4.’ (Ebel Büro für Gewässerökologie und Fischereibiologie, Halle (Saale), Germany). [Fish protection and downstream passage at hydro power stations; handbook of bar rack and bypass systems].
Enders, E. C., Gessel, M. H., and Williams, J. G. (2009). Development of successful fish passage structures for downstream migrants requires knowledge of their behavioural response to accelerating flow. Canadian Journal of Fisheries and Aquatic Sciences 66, 2109–2117.
| Development of successful fish passage structures for downstream migrants requires knowledge of their behavioural response to accelerating flow.Crossref | GoogleScholarGoogle Scholar |
Enders, E. C., Castro-Santos, T., and Lacey, R. W. J. (2017). The effects of horizontally and vertically oriented baffles on flow structure and ascent performance of upstream-migrating fish. Journal of Ecohydraulics 2, 38–52.
| The effects of horizontally and vertically oriented baffles on flow structure and ascent performance of upstream-migrating fish.Crossref | GoogleScholarGoogle Scholar |
Evans, S. D., Adams, N. S., Rondorf, D. W., Plumb, J. M., and Ebberts, B. D. (2008). Performance of a prototype surface collector for juvenile salmonids at Bonneville Dam’s first powerhouse on the Columbia River, Oregon. River Research and Applications 24, 960–974.
| Performance of a prototype surface collector for juvenile salmonids at Bonneville Dam’s first powerhouse on the Columbia River, Oregon.Crossref | GoogleScholarGoogle Scholar |
Faber, D. M., Ploskey, G. R., Weiland, M. A., Deng, Z. D., Hughes, J. S., Kim, J., Fu, T., Fischer, E. S., Monter, T. J., and Skalski, J. R. (2011). Evaluation of behavioral guidance structure on juvenile salmonid passage and survival at Bonneville Dam in 2009. Final report PNNL-20338, Pacific Northwest National Laboratory, Richland, WA, USA.
Fjeldstad, H. P., Barlaup, B. T., Stickler, M., Gabrielsen, S.-E., and Alfredsen, K. (2012a). Removal of weirs and the influence on physical habitat for salmonids in a Norwegian river. River Research and Applications 28, 753–763.
| Removal of weirs and the influence on physical habitat for salmonids in a Norwegian river.Crossref | GoogleScholarGoogle Scholar |
Fjeldstad, H. P., Uglem, I., Diserud, O. H., Fiske, P., Forseth, T., Kvingedal, E., Hvidsten, N. A., Økland, F., and Järnegren, J. (2012b). A concept for improving Atlantic salmon Salmo salar smolt migration past hydro power intakes. Journal of Fish Biology 81, 642–663.
| A concept for improving Atlantic salmon Salmo salar smolt migration past hydro power intakes.Crossref | GoogleScholarGoogle Scholar |
Fjeldstad, H.-P., Alfredsen, K., and Boissy, T. (2014). Optimising Atlantic salmon smolt survival by use of hydropower simulation modelling in a regulated river. Fisheries Management and Ecology 21, 22–31.
| Optimising Atlantic salmon smolt survival by use of hydropower simulation modelling in a regulated river.Crossref | GoogleScholarGoogle Scholar |
Gao, Z., Andersson, H. I., Dai, H., Jiang, F., and Zhao, L. (2016). A new Eulerian–Lagrangian agent method to model fish paths in a vertical slot fishway. Ecological Engineering 88, 217–225.
| A new Eulerian–Lagrangian agent method to model fish paths in a vertical slot fishway.Crossref | GoogleScholarGoogle Scholar |
Geist, D. R., Linley, T. J., Cullinan, V., and Deng, Z. (2013). The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance. North American Journal of Fisheries Management 33, 200–215.
| The effects of total dissolved gas on chum salmon fry survival, growth, gas bubble disease, and seawater tolerance.Crossref | GoogleScholarGoogle Scholar |
Goodwin, R. A., Politano, M., Garvin, J. W., Nestler, J. M., Hay, D., Anderson, J. J., Weber, L. J., Dimperio, E., Smith, D. L., and Timko, M. (2014). Fish navigation of large dams emerges from their modulation of flow field experience. Proceedings of the National Academy of Sciences of the United States of America 111, 5277–5282.
| Fish navigation of large dams emerges from their modulation of flow field experience.Crossref | GoogleScholarGoogle Scholar |
Gosset, C., Travade, F., Durif, C. M. F., Rives, J., and Elie, P. (2005). Tests of two types of bypass for downstream migration of eels at a small hydroelectric power plant. River Research and Applications 21, 1095–1105.
| Tests of two types of bypass for downstream migration of eels at a small hydroelectric power plant.Crossref | GoogleScholarGoogle Scholar |
Greenberg, L. A., Calles, O., Andersson, J., and Engqvist, T. (2012). Effect of trash diverters and overhead cover on downstream migrating brown trout smolts. Ecological Engineering 48, 25–29.
| Effect of trash diverters and overhead cover on downstream migrating brown trout smolts.Crossref | GoogleScholarGoogle Scholar |
Ham, K. D., Arimescu, C. I. I., Simmons, M. A., Duncan, J. P., Chamness, M. A., and Solcz, A. (2009). Synthesis of biological research on juvenile fish passage and survival 1990–2006: Lower Granite Dam. Final report PNWD-4059. Batelle Pacific Northwest Division, Richland, WA, USA.
Hanson, B. N. (1999). Effectiveness of two surface bypass facilities on the Connecticut River to pass emigrating Atlantic salmon smolts. In ‘Innovations in Fish Passage Technology’. (Ed. M. Odeh.) pp. 43–59. (American Fisheries Society: Bethesda, MD, USA.)
Haro, A., Odeh, M., Noreika, J., and Castro-Santos, T. (1998). Effect of water acceleration on downstream migratory behavior and passage of Atlantic salmon smolts and juvenile American shad at surface bypasses. Transactions of the American Fisheries Society 127, 118–127.
| Effect of water acceleration on downstream migratory behavior and passage of Atlantic salmon smolts and juvenile American shad at surface bypasses.Crossref | GoogleScholarGoogle Scholar |
Hogan, T. W., Čada, G. F., and Amaral, S. V. (2014). The status of environmentally enhanced hydropower turbines. Fisheries 39, 164–172.
| The status of environmentally enhanced hydropower turbines.Crossref | GoogleScholarGoogle Scholar |
Independent Scientific Advisory Board (2006). Biological Effectiveness of 2005 Summer Spill. Report number ISAB 2006-1, ISAB, Portland, OR, USA.
Iverson, T. K. (1999). A scanning split-beam hydroacoustic technique for determining the zone of entrainment of juvenile salmonids passing hydropower dams. In ‘Innovations in Fish Passage Technology’. (Ed. M. Odeh.) pp. 143–153. (American Fisheries Society: Bethesda, MD, USA.)
Jacoby, D., and Gollock, M. (2014). Anguilla Anguilla (European eel). In ‘The IUCN Red List of Threatened Species 2014’, e.T60344A45833138. (International Union for Conservation of Nature and Natural Resources.) Available at http://www.iucnredlist.org/details/60344/0 [Verified 16 July 2018].
Jacoby, D., Casselman, J. M., DeLucia, M., and Gollock, M. (2017). Anguilla rostrata (American eel). In ‘The IUCN Red List of Threatened Species 2017’, e.T191108A121739077. (International Union for Conservation of Nature and Natural Resources.) Available at http://www.iucnredlist.org/details/191108/0 [Verified 16 July 2018].
Johnson, G. E., and Dauble, D. D. (2006). Surface flow outlets to protect juvenile salmonids passing through hydropower dams. Reviews in Fisheries Science 14, 213–244.
| Surface flow outlets to protect juvenile salmonids passing through hydropower dams.Crossref | GoogleScholarGoogle Scholar |
Johnson, G. E., Adams, N. S., Johnson, R. L., Rondorf, D. W., Dauble, D. D., and Barila, T. Y. (2000). Evaluation of the prototype surface bypass for salmonid smolts in spring 1996 and 1997 at Lower Granite Dam on the Snake River, Washington. Transactions of the American Fisheries Society 129, 381–397.
| Evaluation of the prototype surface bypass for salmonid smolts in spring 1996 and 1997 at Lower Granite Dam on the Snake River, Washington.Crossref | GoogleScholarGoogle Scholar |
Johnson, G. E., Anglea, S. M., Adams, N. S., and Wik, T. O. (2005). Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996–2000. North American Journal of Fisheries Management 25, 138–151.
| Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996–2000.Crossref | GoogleScholarGoogle Scholar |
Johnson, G. E., Khan, F., Skalski, J. R., and Klatte, B. A. (2013). Sluiceway operations to pass juvenile salmonids at the Dalles Dam, Columbia River, USA. North American Journal of Fisheries Management 33, 1000–1012.
| Sluiceway operations to pass juvenile salmonids at the Dalles Dam, Columbia River, USA.Crossref | GoogleScholarGoogle Scholar |
Katopodis, C., and Williams, J. G. (2012). The development of fish passage research in a historical context. Ecological Engineering 48, 8–18.
| The development of fish passage research in a historical context.Crossref | GoogleScholarGoogle Scholar |
Kemp, P. S., Gessel, M. H., and Williams, J. G. (2005). Fine-scale behavioral responses of Pacific salmonid smolts as they encounter divergence and acceleration of flow. Transactions of the American Fisheries Society 134, 390–398.
| Fine-scale behavioral responses of Pacific salmonid smolts as they encounter divergence and acceleration of flow.Crossref | GoogleScholarGoogle Scholar |
Khan, F., Royer, I. M., Johnson, G. E., and Ham, K. D. (2012). Hydroacoustic evaluation of juvenile salmonid passage and distribution at Detroit Dam, 2011. Final report PNNL-21577. Pacific Northwest National Laboratory, Richland, WA, USA.
Khan, F., Royer, I. M., Johnson, G. E., and Tackley, S. C. (2013). Sluiceway operations for adult steelhead downstream passage at The Dalles Dam, Columbia River, USA. North American Journal of Fisheries Management 33, 1013–1023.
| Sluiceway operations for adult steelhead downstream passage at The Dalles Dam, Columbia River, USA.Crossref | GoogleScholarGoogle Scholar |
Kriewitz-Byun, C. R. (2015). Leitrechen an Fischabstiegsanlagen: Hydraulik und fischbiologische Effizienz. VAW Mitteilungen 230. Ph.D. Dissertation, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, Zürich, Switzerland.
Larinier, M. (2008). Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609, 97–108.
| Fish passage experience at small-scale hydro-electric power plants in France.Crossref | GoogleScholarGoogle Scholar |
Larinier, M., and Travade, F. (1999). The development and evaluation of downstream bypasses for juvenile salmonids at small hydroelectric plants in France. In ‘Innovations in Fish Passage Technology’. (Ed. M. Odeh.) pp. 25–42. (American Fisheries Society: Bethesda, MD, USA.)
Larinier, M., and Travade, F. (2002). Downstream migration: problems and facilities. Bulletin Francais de la Peche et de la Pisciculture 364, 181–207.
| Downstream migration: problems and facilities.Crossref | GoogleScholarGoogle Scholar |
Lehmann, B., Adam, B., Engler, O., Hecht, V., and Schneider, K. (2016). Ethohydraulische Untersuchungen zur Verbesserung des Fischschutzes an Wasserkraftanlagen: Ergebnisse des F+E-Vorhabens (FKZ 3513 85 0300) des Bundesamtes für Naturschutz, Naturschutz und biologische Vielfalt, Heft 151, Bundesamt für Naturschutz, Bonn, Germany.
Li, X., Deng, Z. D., Brown, R. S., Fu, T., Martinez, J. J., McMichael, G. A., Skalski, J. R., Townsend, R. L., Trumbo, B. A., Ahmann, M. L., and Renholds, J. F. (2015). Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival. Conservation Physiology 3, cou064.
| Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.Crossref | GoogleScholarGoogle Scholar |
Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 362, 1973–1993.
| A review of fish swimming mechanics and behaviour in altered flows.Crossref | GoogleScholarGoogle Scholar |
Liao, J. C., Beal, D. N., Lauder, G. V., and Triantafyllou, M. S. (2003). Fish exploiting vortices decrease muscle activity. Science 302, 1566–1569.
| Fish exploiting vortices decrease muscle activity.Crossref | GoogleScholarGoogle Scholar |
Limnoplan (2016). Kontrolle der Monitoringeinrichtungen an der Pilotanlage Unkelmühle (Sieg): Lachs–Smoltabwanderung im Frühjahr 2016: Untersuchung im Auftrag des Landesamtes für Natur, Umwelt und Verbraucherschutz Nordrhein-Westaflen (LANUV), Recklinghausen, Ergebnisbericht. Limnoplan – Fisch- und Gewässerökologie, Erftstadt, Germany.
Lucas, M. C., Bubb, D. H., Jang, M.-H., Ha, K., and Masters, J. E. G. (2009). Availability of and access to critical habitats in regulated rivers. Effects of low-head barriers on threatened lampreys. Freshwater Biology 54, 621–634.
| Availability of and access to critical habitats in regulated rivers. Effects of low-head barriers on threatened lampreys.Crossref | GoogleScholarGoogle Scholar |
Lupandin, A. I. (2005). Effect of flow turbulence on swimming speed of fish. The Biological Bulletin 32, 461–466.
| Effect of flow turbulence on swimming speed of fish.Crossref | GoogleScholarGoogle Scholar |
Lutz, D. S. (1995). Gas supersaturation and gas bubble trauma in fish downstream from a Midwestern reservoir. Transactions of the American Fisheries Society 124, 423–436.
| Gas supersaturation and gas bubble trauma in fish downstream from a Midwestern reservoir.Crossref | GoogleScholarGoogle Scholar |
Marohn, L., Prigge, E., and Hanel, R. (2014). Escapement success of silver eels from a German river system is low compared to management-based estimates. Freshwater Biology 59, 64–72.
| Escapement success of silver eels from a German river system is low compared to management-based estimates.Crossref | GoogleScholarGoogle Scholar |
Marriner, B. A., Baki, A. B. M., Zhu, D. Z., Cooke, S. J., and Katopodis, C. (2016). The hydraulics of a vertical slot fishway. A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecological Engineering 90, 190–202.
| The hydraulics of a vertical slot fishway. A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada.Crossref | GoogleScholarGoogle Scholar |
Mathur, D., Heisey, P. G., Skalski, J. R., and Kenney, D. R. (1999). Survival of Chinook salmon smolts through the surface bypass collector at Lower Granite Dam, Snake River. In ‘Innovations in Fish Passage Technology’. (Ed. M. Odeh.) pp. 119–127. (American Fisheries Society: Bethesda, MD, USA.)
National Oceanic and Atmospheric Administration (2008). Biological opinion: consultation on remand for operation of the federal Columbia River power system, 11 Bureau of Reclamation Projects in the Columbia Basin and ESA Section 10(a)(1)(A) Permit for Juvenile Fish Transportation Program. Report number: F/NWR/2005/05883, NOAA Fisheries.
Naumann, S., and Heimerl, S. (2017). Fischschutz und Fischabstieg im Dialog – Forum ‘Fischschutz und Fischabstieg’. In ‘Biologische Durchgängigkeit von Fließgewässern: Ausgewählte Beiträge aus der Fachzeitschrift WasserWirtschaft. (Ed. S. Heimerl.) pp. 2–9. (Springer-Verlag: Wiesbaden, Germany.)
Neitzel, D. A., Dauble, D. D., Čada, G. F., Richmond, M. C., Guensch, G. R., Mueller, R. P., Abernethy, C. S., and Amidan, B. (2004). Survival estimates for juvenile fish subjected to a laboratory-generated shear environment. Transactions of the American Fisheries Society 133, 447–454.
| Survival estimates for juvenile fish subjected to a laboratory-generated shear environment.Crossref | GoogleScholarGoogle Scholar |
Northcote, T. G. (1998). Migratory behaviour of fish and its significance to movement through riverine fish passage facilities. In ‘Fish Migration and Fish Bypasses’. (Eds M. Jungwirth, S. Schmutz, and S. Weiss.) pp. 3–18. (Fishing News Books; Blackwell Science: Oxford, UK.)
Nyqvist, D., Greenberg, L. A., Goerig, E., Calles, O., Bergman, E., Ardren, W. R., and Castro-Santos, T. (2017). Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecology Freshwater Fish 26, 707–718.
| Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam.Crossref | GoogleScholarGoogle Scholar |
Odeh, M., and Orvis, C. (1998). Downstream fish passage design considerations and developments at hydroelectric projects in the Northeast USA. In ‘Fish Migration and Fish Bypasses’. (Eds M. Jungwirth, S. Schmutz, and S. Weiss.) pp. 267–280. (Fishing News Books; Blackwell Science: Oxford, UK.)
Ogden, D. A., Hockersmith, E. E., Axel, G. A., Burke, B. J., Frick, K. E., Absolon, R. F., and Sandford, B. P. (2008). Passage behavior and survival of river-run subyearling Chinook salmon at Ice Harbor Dam, 2007 Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
Økland, F., Teichert, M. A. K., Havn, T. B., Thorstad, E. B., Heermann, L., Sæther, S. A., Tambets, M., and Borcherding, J. (2017). Downstream migration of European eel at three German hydropower stations, NINA report 1355. University of Cologne, Köln, Germany; and Norwegian Institute for Nature research, Trondheim, Norway.
Ovidio, M., Dierckx, A., Bunel, S., Grandry, L., Spronck, C., and Benitez, J. P. (2017). Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system. River Research and Applications 33, 27–36.
| Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system.Crossref | GoogleScholarGoogle Scholar |
Peake, S., and McKinley, R. S. (1998). A re-evaluation of swimming performance in juvenile salmonids relative to downstream migration. Canadian Journal of Fisheries and Aquatic Sciences 55, 682–687.
| A re-evaluation of swimming performance in juvenile salmonids relative to downstream migration.Crossref | GoogleScholarGoogle Scholar |
Perry, R. W., Kock, T. J., Courter, I. I., Garrison, T. M., Hubble, J. D., and Child, D. B. (2016). Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam. River Research and Applications 32, 2009–2019.
| Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam.Crossref | GoogleScholarGoogle Scholar |
Peven, C. M., and Mosey, T. R. (1999). Development of surface bypass and collection at Rocky Reach Dam, Columbia River. In ‘Innovations in Fish Passage Technology’. (Ed. M. Odeh.) pp. 79–92. (American Fisheries Society: Bethesda, MD, USA.)
Plumb, J. M., Braatz, A. C., Lucchesi, J. N., Fielding, S. D., Sprando, J. M., George, G. T., Adams, N. S., and Rondorf, D. W. (2003). Behavior of radio-tagged juvenile Chinook salmon and steelhead and performance of a removable spillway weir at Lower Granite Dam, Washington, 2002: annual report of research. US Geological Survey, Cook, WA, USA.
Plumb, J. M., Braatz, A. C., Lucchesi, J. N., Fielding, S. D., Cochran, A. D., Nation, T. K., Sprando, J. M., Schei, J. L., Perry, R. W., Adams, N. S., and Rondorf, D. W. (2004). Behavior and survival of radio-tagged juvenile Chinook salmon and steelhead relative to the performance of a removable spillway weir at Lower Granite Dam, Washington, 2003, final report of research. US Geological Survey, Cook, WA, USA.
Pracheil, B. M., DeRolph, C. R., Schramm, M. P., and Bevelhimer, M. S. (2016). A fish-eye view of riverine hydropower systems. The current understanding of the biological response to turbine passage. Reviews in Fish Biology and Fisheries 26, 153–167.
| A fish-eye view of riverine hydropower systems. The current understanding of the biological response to turbine passage.Crossref | GoogleScholarGoogle Scholar |
Schiewe, M. H. (1974). Influence of dissolved atmospheric gas on swimming performance of juvenile Chinook salmon. Transactions of the American Fisheries Society 103, 717–721.
| Influence of dissolved atmospheric gas on swimming performance of juvenile Chinook salmon.Crossref | GoogleScholarGoogle Scholar |
Schilt, C. R. (2007). Developing fish passage and protection at hydropower dams. Applied Animal Behaviour Science 104, 295–325.
| Developing fish passage and protection at hydropower dams.Crossref | GoogleScholarGoogle Scholar |
Schmalz, W., Wagner, F., and Sonny, D. (2015). Forum ‘Fischschutz und Fischabstieg’ Arbeitshilfe zur standörtlichen Evaluierung des Fischschutzes und Fischabstiegs. Ecologic Institut, Berlin, Germany.
Scruton, D. A., Pennell, C. J., Bourgeois, C. E., Goosney, R. F., Porter, T. R., and Clarke, K. D. (2007). Assessment of a retrofitted downstream fish bypass system for wild Atlantic salmon (Salmo salar) smolts and kelts at a hydroelectric facility on the Exploits River, Newfoundland, Canada. Hydrobiologia 582, 155–169.
| Assessment of a retrofitted downstream fish bypass system for wild Atlantic salmon (Salmo salar) smolts and kelts at a hydroelectric facility on the Exploits River, Newfoundland, Canada.Crossref | GoogleScholarGoogle Scholar |
Silva, A. T., Katopodis, C., Santos, J. M., Ferreira, M. T., and Pinheiro, A. N. (2012). Cyprinid swimming behaviour in response to turbulent flow. Ecological Engineering 44, 314–328.
| Cyprinid swimming behaviour in response to turbulent flow.Crossref | GoogleScholarGoogle Scholar |
Silva, A. T., Katopodis, C., Tachie, M. F., Santos, J. M., and Ferreira, M. T. (2016). Downstream swimming behaviour of catadromous and potamodromous fish over spillways. River Research and Applications 32, 935–945.
| Downstream swimming behaviour of catadromous and potamodromous fish over spillways.Crossref | GoogleScholarGoogle Scholar |
Silva, A. T., Lucas, M. C., Castro-Santos, T., Katopodis, C., Baumgartner, L. J., Thiem, J. D., Aarestrup, K., Pompeu, P. S., O’Brien, G. C., Braun, D. C., Burnett, N. J., Zhu, D. Z., Fjeldstad, H.-P., Forseth, T., Rajaratnam, N., Williams, J. G., and Cooke, S. J. (2017). The future of fish passage science, engineering, and practice. Fish and Fisheries 6, 97.
Steig, T. W., and Adeniyi, R. (1999). Hydroacoustic evaluation of fish passage through a prototype surface bypass collector at Rocky Reach Dam. In ‘Innovations in Fish Passage Technology’. (Ed. M. Odeh.) pp. 93–103. (American Fisheries Society: Bethesda, MD, USA.)
Travade, F., and Larinier, M. (1992). La migration de dévalaison: problèmes et dispositifs. Bulletin Francais de la Peche et de la Pisciculture 326/327, 165–176.
| La migration de dévalaison: problèmes et dispositifs.Crossref | GoogleScholarGoogle Scholar |
Travade, F., Gouyou, C., and de Faveri, N. (1999). Efficacité d’un exutoire de dévalaison et d’une barrière acoustique pour les smolts de saumon atlantique (Salmo salar L.) à l’aménagement hydroélectrique de St. Cricq sur le gave d’Ossau. Bulletin Francais de la Peche et de la Pisciculture 353–354, 157–180.
| Efficacité d’un exutoire de dévalaison et d’une barrière acoustique pour les smolts de saumon atlantique (Salmo salar L.) à l’aménagement hydroélectrique de St. Cricq sur le gave d’Ossau.Crossref | GoogleScholarGoogle Scholar |
Travade, F., Larinier, M., Subra, S., Gomes, P., and De-Oliveira, E. (2010). Behaviour and passage of European silver eels (Anguilla anguilla) at a small hydropower plant during their downstream migration. Knowledge and Management of Aquatic Ecosystems 398, 1–19.
| Behaviour and passage of European silver eels (Anguilla anguilla) at a small hydropower plant during their downstream migration.Crossref | GoogleScholarGoogle Scholar |
Turnpenny, A. W. H., Struthers, G. and Hanson, K. P. (1998). A UK guide to intake fish-screening regulations, policy and best practice: ETSU H/06/00052/00/00, report. Fawley Aquatic Research Laboratories Ltd, Fawley, UK, and Hydroplan, Wimborne, UK.
US Department of the Interior (2006). ‘Fish Protection at Water Diversions: a Guide for Planning and Designing Fish Exclusion Facilities.’ (US Department of the Interior, Bureau of Reclamation: Denver, CO, USA.)
Washburn, E., Hateley, J., and Gregory, J. (2015). ‘Monitoring Fish Pass Performance: Towards a European Standard. International Conference on Engineering and Ecohydrology for Fish Passage. 3’, University of Massachusetts, Amherst, MA, USA.
Weiland, L. K., Mesa, M. G., and Maule, A. G. (1999). Influence of infection with renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma. Journal of Aquatic Animal Health 11, 123–129.
| Influence of infection with renibacterium salmoninarum on susceptibility of juvenile spring chinook salmon to gas bubble trauma.Crossref | GoogleScholarGoogle Scholar |
Williams, J. G., Armstrong, G., Katopodis, C., Larinier, M., and Travade, F. (2012). Thinking like a fish. A key ingredient for development of effective fish passage facilities at river obstructions. River Research and Applications 28, 407–417.
| Thinking like a fish. A key ingredient for development of effective fish passage facilities at river obstructions.Crossref | GoogleScholarGoogle Scholar |
Willis, C. F., and Uremovich, B. L. (1982). Evaluation of the ice and trash sluiceway at Bonneville Dam as a bypass system for juvenile salmonids, 1981: annual progress report. Oregon Department of Fish and Wildlife, Portland, OR, USA.
Winter, H. V., Bierman, S. M., and Griffioen, A. B. (2012). Field test for mortality of eel after passage through the newly developed turbine of Pentair Faurbanks Nijhuis and FishFlow Innovations. Report number: C111/12, Institute for Marine Resources and Ecosystem Studies, Ijmuiden, Netherlands.