Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The El Nino-Southern Oscillation in south-eastern Australian waters

WW Hsieh and BV Hamon

Australian Journal of Marine and Freshwater Research 42(3) 263 - 275
Published: 1991

Abstract

Using four decades of hydrographic data collected off the coast near Sydney, New South Wales, and sea-level data at Sydney, we studied the interannual variability in south-eastern Australian shelf waters. The first two empirical orthogonal function (EOF) modes of the band-pass-filtered 50-m-depth hydrographic data (temperature, T; salinity, S; nitrate, N; inorganic phosphate, P; and oxygen, O) and the sea level (SL) and adjusted sea level (ASL) data accounted respectively for 51 and 27% of the total variance. Both modes were significantly correlated with the Southern Oscillation Index (SOI). The first mode, with T, S, O and ASL varying in opposition to N and P, represented the internal or baroclinic response, associated with vertical displacements of the isopycnals. The second mode, with large in-phase fluctuations in SL and ASL but small changes in the hydrographic variables, represented mainly the external or barotropic response during the El Niiio-Southern Oscillation (ENSO).

Three-year composites centred around seven ENSO warm episodes revealed that T, S, O and ASL were generally low and N, P, SL and SO1 were high in the year before each ENSO warm episode, but the former group rose while the latter group dropped in the year of the warm episode. The changes in the hydrographic variables at 50 m depth were consistent with relatively shallow isopycnals in the year before the ENSO warm episode, followed by a deepening of the isopycnals during the warm episode. Estimates of this downward displacement of isopycnals, as determined from T, N, P and O, were in the range 7-10 m.

The geostrophic wind arising from the pressure fluctuations during ENSO is proposed as a probable cause for the vertical displacement of the isopycnals. In the year before the warm episode, the low air pressure over Australia would produce a clockwise geostrophic wind around south-eastern Australia, generating offshore Ekman transport and coastal upwelling. During the warm episode, air pressure over Australia rises, the geostrophic wind reverses, and downward movement of the isopycnals would occur off south-eastern Australia.

https://doi.org/10.1071/MF9910263

© CSIRO 1991

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions