Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Regional differences in the air–sea CO2 flux between 3 and 14°S in the south-western tropical Atlantic

Lucas Medeiros Guimarães https://orcid.org/0000-0001-6615-5812 A * , Manuel J. Flores Montes A and Nathalie Lefèvre B
+ Author Affiliations
- Author Affiliations

A Department of Oceanography, Federal University of Pernambuco, Arquitetura Avenue, Cidade Universitária, Recife, PE 50740-550, Brazil.

B LOCEAN, IRD/Sorbonne Université/CNRS/MNHN, 4 place Jussieu, F-75252 Paris, France.

* Correspondence to: lmguimaraes1@gmail.com

Handling Editor: Yunlin Zhang

Marine and Freshwater Research 75, MF22276 https://doi.org/10.1071/MF22276
Submitted: 15 January 2023  Accepted: 14 April 2024  Published: 9 May 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

The fugacity of surface-seawater CO2 (fCO2sw) and the sea–air CO2 fluxes in the south-western tropical Atlantic (SWTA) were studied to increase the knowledge about the carbon cycle in this region.

Aims

This paper aims to describe the distribution of fCO2sw in SWTA.

Methods

The fCO2sw was measured from 2008 to 2020 by volunteer merchant ships with an onboard system that measures pCO2 while the vessels were underway.

Key results

Higher values occurred north of 8°S than in the region south of 8°S. The north is a strong source of CO2 for the atmosphere, with an annual mean value of 3.14 ± 0.52 mmol m−2 day−1. The south is a weaker source of CO2, with an annual average of 0.93 ± 0.90 mmol m−2 day−1. In the months of July and August, a weak sink of CO2 was observed, with a mean of −0.55 mmol m−2 day−1.

Conclusions and implications

The differences between these two regions are explained by the origin of the surface-water masses encountered along the ship track. The central branch of the South Equatorial Current (SEC) transports surface water, with a higher CO2 concentration and lower salinity, north of 8°S, whereas the surface waters between 8 and 14°S come from the southern branch of the SEC. The intertropical convergence zone is another physical process influencing the region north of 8°S.

Keywords: CO2 flux, CO2 fugacity, Intertropical Convergence Zone, North Brazilian Undercurrent, north-eastern Brazil, sea-surface salinity, sea-surface temperature, South Equatorial Current.

References

Agência Nacional de Águas e Saneamento Básico (2024) Conjuntura dos recursos hídricos no Brasil 2023 [recurso eletrônico]: informe anual. (ANA: Brasília, Brazil) Available at https://biblioteca.ana.gov.br/sophia_web/acervo/detalhe/101813 [In Portuguese, verified 23 April 2024]

Albuquerque C, Kerr R, Monteiro T, Orselli IBM, Carvalho-Borges M, Carvalho ACO, Machado EC, Mansur JK, Copertino MS, Mendes CRB (2022) Seasonal variability of carbonate chemistry and its controls in a subtropical estuary. Estuarine, Coastal and Shelf Science 276, 108020.
| Crossref | Google Scholar |

Alory G, Delcroix T, Téchiné P, Diverrès D, Varillon D, Cravatte S, Gouriou Y, Grelet J, Jacquin S, Kestenare E, Maes C, Morrow R, Perrier J, Reverdin G, Roubaud F (2015) The French contribution to the voluntary observing ships network of sea surface salinity. Deep-Sea Research – I. Oceanographic Research Papers 105, 1-18.
| Crossref | Google Scholar |

Amorim FN, Cirano M, Marta-Almeida M, Middleton JF, Campos EJD (2013) The seasonal circulation of the Eastern Brazilian shelf between 10°S and 16°S: a modelling approach. Continental Shelf Research 65, 121-140.
| Google Scholar |

Andrié C, Oudot C, Genthon C, Merlivat L (1986) CO2 fluxes in the tropical Atlantic during FOCAL cruises. Journal of Geophysical Research: Oceans 91(C10), 11741-11755.
| Crossref | Google Scholar |

Araujo M, Limongi C, Servain J, Silva M, Leite FS, Veleda D, Lentini CAD (2011) Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil. Ocean Science 7(1), 63-73.
| Crossref | Google Scholar |

Araujo M, Noriega C, Medeiros C, Lefèvre N, Ibánhez JSP, Flores Montes M, Silva AC, Santos ML (2019) On the variability in the CO2 system and water productivity in the western tropical Atlantic off north and northeast Brazil. Journal of Marine Systems 189, 62-77.
| Crossref | Google Scholar |

Ashton IG, Shutler JD, Land PE, Woolf DK, Quartly GD (2016) A sensitivity analysis of the impact of rain on regional and global sea–air fluxes of CO2. PLoS ONE 11(9), e0161105.
| Crossref | Google Scholar | PubMed |

Assunção RV, Silva AC, Roy A, Bourlès B, Silva CHS, Ternon J-F, Araujo M, Bertrand A (2020) 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Progress in Oceanography 187, 102399.
| Crossref | Google Scholar |

Berry G, Reeder MJ (2014) Objective identification of the intertropical convergence zone: climatology and trends from the ERA-Interim. Journal of Climate 27(5), 1894-1909.
| Crossref | Google Scholar |

Bonou FK, Noriega C, Lefèvre N, Araujo M (2016) Distribution of CO2 parameters in the western tropical Atlantic Ocean. Dynamics of Atmospheres and Oceans 73, 47-60.
| Crossref | Google Scholar |

Carvalho ACO, Marins RV, Dias FJS, Rezende CE, Lefèvre N, Cavalcante MS, Eschrique SA (2017) Air–sea CO2 fluxes for the Brazilian northeast continental shelf in a climatic transition region. Journal of Marine Systems 173, 70-80.
| Crossref | Google Scholar |

Chen C-TA, Huang T-H, Chen Y-C, Bai Y, He X, Kang Y (2013) Air–sea exchanges of coin the world’s coastal seas. Biogeosciences 10(10), 6509-6544.
| Crossref | Google Scholar |

Ciotti ÁM, Garcia CAE, Jorge DSF (2010) Temporal and meridional variability of satellite-estimates of surface chlorophyll concentration over the Brazilian continental shelf. Pan-American Journal of Aquatic Sciences 5(2), 236-253.
| Google Scholar |

Clark DR, Rees AP, Joint I (2008) Ammonium regeneration and nitrification rates in the oligotrophic Atlantic Ocean: implications for new production estimates. Limnology and Oceanography 53(1), 52-62.
| Crossref | Google Scholar |

Cotovicz LC, Jr, Chielle R, Marins RV (2020) Air–sea CO2 flux in an equatorial continental shelf dominated by coral reefs (southwestern Atlantic Ocean). Continental Shelf Research 204, 104175.
| Crossref | Google Scholar |

Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. Journal of Hydrometeorology 3(6), 660-687.
| Crossref | Google Scholar |

De Queiroz AR, Flores Montes M, de Castro Melo PAM, da Silva RA, Koening ML (2015) Vertical and horizontal distribution of phytoplankton around an oceanic archipelago of the Equatorial Atlantic. Marine Biodiversity Records 8, e155.
| Crossref | Google Scholar |

Dossa AN, Silva AC, Chaigneau A, Eldin G, Araujo M, Bertrand A (2021) Near-surface western boundary circulation off northeast Brazil. Progress in Oceanography 190, 102475.
| Crossref | Google Scholar |

Earth Space Research (2009) OSCAR third degree resolution ocean surface currents (OSCAR_L4_OC_third-deg). (ESR) [Dataset] doi:10.5067/OSCAR-03D01

Ford DJ, Tilstone GH, Shutler JD, Kitidis V (2022) Derivation of seawater pCO2 from net community production identifies the South Atlantic Ocean as a CO2 source. Biogeosciences 19(1), 93-115.
| Crossref | Google Scholar |

Gaspar FL, Pinheiro BR, Noriega CED, Araujo M, Lefèvre N, Montes MJF (2018) Alkalinity, inorganic carbon and CO2 flux variability during extreme rainfall years (2010–2011) in two polluted tropical estuaries NE Brazil. Brazilian Journal of Oceanography 66(1), 115-130.
| Crossref | Google Scholar |

Giffard P, Llovel W, Jouanno J, Morvan G, Decharme B (2019) Contribution of the Amazon river discharge to regional sea level in the tropical Atlantic Ocean. Water 11(11), 2348.
| Crossref | Google Scholar |

Gonçalves Ito R, Schneider B, Thomas H (2005) Distribution of surface fCO2 and air–sea fluxes in the southwestern subtropical Atlantic and adjacent continental shelf. Journal of Marine Systems 56(3–4), 227-242.
| Crossref | Google Scholar |

Hounsou-gbo GA, Araujo M, Bourlès B, Veleda D, Servain J (2015) Tropical Atlantic contributions to strong rainfall variability along the northeast Brazilian coast. Advances in Meteorology 2015, 902084.
| Crossref | Google Scholar |

Ibánhez JSP, Diverrès D, Araujo M, Lefèvre N (2015) Seasonal and interannual variability of sea–air CO2 fluxes in the tropical Atlantic affected by the Amazon River plume. Global Biogeochemical Cycles 29(10), 1640-1655.
| Crossref | Google Scholar |

Ibánhez JSP, Araujo M, Lefèvre N (2016) The overlooked tropical oceanic CO2 sink. Geophysical Research Letters 43(8), 3804-3812.
| Crossref | Google Scholar |

Ibánhez JSP, Flores M, Lefèvre N (2017) Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010. Scientific Reports 7, 41694.
| Crossref | Google Scholar |

Ibánhez JSP, Flores Montes M, Lefèvre N (2022) Evidence for enhanced primary production driving significant CO2 drawdown associated with the Atlantic ITCZ. Science of The Total Environment 838, 156592.
| Crossref | Google Scholar |

Ito RG, Garcia CAE, Tavano VM (2016) Net sea–air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011. Continental Shelf Research 119, 68-84.
| Crossref | Google Scholar |

Kerr R, da Cunha LC, Kikuchi RKP, Horta PA, Ito RG, Müller MN, Orselli IBM, Lencina-Avila JM, de Orte MR, Sordo L, Pinheiro BR, Bonou FK, Schubert N, Bergstrom E, Copertino MS (2016) The western south Atlantic Ocean in a high-CO2 world: current measurement capabilities and perspectives. Environmental Management 57(3), 740-752.
| Crossref | Google Scholar | PubMed |

Kitidis V, Brown I, Hardman-Mountford N, Lefèvre N (2017) Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995–2013); evidence of ocean acidification. Progress in Oceanography 158, 65-75.
| Crossref | Google Scholar |

Landschützer P, Laruelle GG, Roobaert A, Regnier P (2020) A uniform pCO2 climatology combining open and coastal oceans. Earth System Science Data Discussions 12, 2537-2553.
| Crossref | Google Scholar |

Laruelle GG, Dürr HH, Slomp CP, Borges AV (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially explicit typology of estuaries and continental shelves. Geophysical Research Letters 37(15), L15607.
| Crossref | Google Scholar |

Laruelle GG, Lauerwald R, Pfeil B, Regnier P (2014) Regionalized global budget of the CO2 exchange at the air–water interface in continental shelf seas. Global Biogeochemical Cycles 28(11), 1199-1214.
| Crossref | Google Scholar |

Lefèvre N, Diverrés D, Gallois F (2010) Origin of CO2 undersaturation in the western tropical Atlantic. Tellus – B. Chemical and Physical Meteorology 62(5), 595-607.
| Crossref | Google Scholar |

Lefèvre N, Urbano DF, Gallois F, Diverrès D (2014) Impact of physical processes on the seasonal distribution of the fugacity of CO2 in the western tropical Atlantic. Journal of Geophysical Research: Oceans 119(2), 646-663.
| Crossref | Google Scholar |

Lefèvre N, Veleda D, Araujo M, Caniaux G (2016) Variability and trends of carbon parameters at a time series in the eastern tropical Atlantic. Tellus – B. Chemical and Physical Meteorology 68(1), 30305.
| Crossref | Google Scholar |

Lefèvre N, Montes MF, Gaspar FL, Rocha C, Jiang S, De Araújo MC, Severino Pino Ibánhez J (2017) Net heterotrophy in the Amazon continental shelf changes rapidly to a sink of CO2 in the outer Amazon plume. Frontiers in Marine Science 4, 278.
| Crossref | Google Scholar |

Lefèvre N, Tyaquiçã P, Veleda D, Perruche C, van Gennip SJ (2020) Amazon River propagation evidenced by a CO2 decrease at 8°N, 38°W in September 2013. Journal of Marine Systems 211, 103419.
| Crossref | Google Scholar |

Liutti CC, Kerr R, Monteiro T, Orselli IBM, Ito RG, Garcia CAE (2021) Sea surface CO2 fugacity in the southwestern South Atlantic Ocean: an evaluation based on satellite-derived images. Marine Chemistry 236, 104020.
| Crossref | Google Scholar |

Luko CD, da Silveira ICA, Simoes-Sousa IT, Araujo JM, Tandon A (2021) Revisiting the Atlantic South Equatorial Current. Journal of Geophysical Research: Oceans 126(7), e2021JC017387.
| Crossref | Google Scholar |

Lumpkin R, Garzoli SL (2005) Near-surface circulation in the Tropical Atlantic Ocean. Deep-Sea Research – I. Oceanographic Research Papers 52(3), 495-518.
| Crossref | Google Scholar |

Mafalda PO Jr, Moura G, Melo G, Sampaio J, Feitosa FAN, Passavante JZO, Moreira MO, Souza CS (2009) Oceanografia Biológica: Biomassa Fitoplanctônica na ZEE da Região Nordeste do Nordeste do Brasil. In ‘Coleção Programa REVIZEE SCORE NORDESTE’. (Ed. F Hissa Vieira Hazin) Vol. 2, pp. 11–26. (Martins & Cordeiro: Fortaleza, Brazil) [In Portuguese]

Molinier M, Guyot JL, De Oliveira E, Guimaraes V (1996) Les regimes hydrologiques de l’Amazone et de sesaffluents. In ‘L’hydrologie tropicale: géosciences et outil pour le développement: mélanges à la mémoire de Jean Rodier. Journées Hydrologiques de l’ORSTOM: Conférence de Paris, 11’, 2–4 May 1995, Paris, France. (Eds C Pierre, P Bernard) Publication - AISH 238, pp. 209–222. (AISH: Wallingford, UK) [In French]

Monteiro T, Batista M, Henley S, Machado EC, Araujo M, Kerr R (2022) Contrasting sea–air CO2 exchanges in the western tropical Atlantic Ocean. Global Biogeochemical Cycles 36(8), e2022GB007385.
| Crossref | Google Scholar |

Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, La Roche J, Lenton TM, Mahowald NM, Marañón E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O (2013) Processes and patterns of oceanic nutrient limitation. Nature Geoscience 6(9), 701-710.
| Crossref | Google Scholar |

Moussa H, Benallal MA, Goyet C, Lefèvre N (2016) Satellite-derived CO2 fugacity in surface seawater of the tropical Atlantic Ocean using a feedforward neural network. International Journal of Remote Sensing 37(3), 580-598.
| Crossref | Google Scholar |

Nobre P, Srukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. Journal of Climate 9(10), 2464-2479.
| Crossref | Google Scholar |

Noriega C, Araujo M, Lefèvre N, Montes MF, Gaspar F, Veleda D (2015) Spatial and temporal variability of CO2 fluxes in tropical estuarine systems near areas of high population density in Brazil. Regional Environmental Change 15(4), 619-630.
| Crossref | Google Scholar |

Oliveira RR, Pezzi LP, Souza RB, Santini MF, Cunha LC, Pacheco FS (2019) First measurements of the ocean–atmosphere CO2 fluxes at the Cabo Frio upwelling system region, southwestern Atlantic Ocean. Continental Shelf Research 181, 135-142.
| Crossref | Google Scholar |

Olsen A, Brown KR, Chierici M, Johannessen T, Neill C (2008) Sea-surface CO2 fugacity in the subpolar North Atlantic. Biogeosciences 5, 535-547.
| Crossref | Google Scholar |

Orselli IBM, Kerr R, Azevedo JLL, Galdino F, Araujo M, Garcia CAE (2019) The sea–air CO2 net fluxes in the south Atlantic Ocean and the role played by Agulhas eddies. Progress in Oceanography 170, 40-52.
| Crossref | Google Scholar |

Padin XA, Vazquez-Rodriguez M, Castano M, Velo A, Alonso-Perez F, Gago J, Gilcoto M, Alvarez M, Pardo PC, de la Paz M, Rios AF, Perez FF (2010) Air–Sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn. Biogeosciences 7(5), 1587-1606.
| Crossref | Google Scholar |

Pailler K, Bourlès B, Gouriou Y (1999) The barrier layer in the western tropical Atlantic Ocean. Geophysical Research Letters 26(14), 2069-2072.
| Crossref | Google Scholar |

Passaia OA, Siqueira VA, Brêda JPLF, Fleischmann AS, de Paiva RCD (2020) Impact of large reservoirs on simulated discharges of Brazilian rivers. O impacto de grandes reservatórios nas vazões simuladas de rios brasileiros. Revista Brasileira de Recursos Hidricos 25, e17 [In English with abstract and title in English and Portuguese].
| Crossref | Google Scholar |

Pierrot D, Neill C, Sullivan K, Castle R, Wanninkhof R, Lüger H, Johannessen T, Olsen A, Feely RA, Cosca CE (2009) Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines. Deep-Sea Research – II. Topical Studies in Oceanography 56(8–10), 512-522.
| Crossref | Google Scholar |

Rodrigues RR, Rothstein LM, Wimbush M (2007) Seasonal variability of the south equatorial current bifurcation in the Atlantic Ocean: a numerical study. Journal of Physical Oceanography 37(1), 16-30.
| Crossref | Google Scholar |

Roobaert A, Laruelle GG, Landschützer P, Gruber N, Chou L, Regnier P (2019) The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean. Global Biogeochemical Cycles 33(12), 1693-1714.
| Crossref | Google Scholar |

Rödenbeck C, Bakker DCE, Gruber N, Iida Y, Jacobson AR, Jones S, Landschützer P, Metzl N, Nakaoka S, Olsen A, Park G-H, Peylin P, Rodgers KB, Sasse TP, Schuster U, Shutler JD, Valsala V, Wanninkhof R, Zeng J (2015) Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences 12(23), 7251-7278.
| Crossref | Google Scholar |

Silva BJ, Gaspar FL, Tyaquiçã P, Lefèvre N, Flores Montes MJ (2019) Carbon chemistry variability around a tropical archipelago. Marine and Freshwater Research 70(6), 767-780.
| Crossref | Google Scholar |

Simpson JJ, Zirino A (1980) Biological control of pH in the Peruvian coastal upwelling area. Deep-Sea Research – A. Oceanographic Research Papers 27(9), 733-743.
| Crossref | Google Scholar |

Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research: Oceans 104(C9), 20863-20883.
| Crossref | Google Scholar |

Stramma L, Schott F (1999) The mean flow field of the tropical Atlantic Ocean. Deep-Sea Research – II. Topical Studies in Oceanography 46, 279-303.
| Crossref | Google Scholar |

Stramma L, Ikeda Y, Peterson RG (1990) Geostrophic transport in the Brazil current region north of 20°S. Deep-Sea Research – A. Oceanographic Research Papers 37(12), 1875-1886.
| Crossref | Google Scholar |

Sweeney C, Gloor E, Jacobson AR, Key RM, McKinley G, Sarmiento JL, Wanninkhof R (2007) Constraining global air–sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21, GB2015.
| Crossref | Google Scholar |

Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research – II. Topical Studies in Oceanography 49(9–10), 1601-1622.
| Crossref | Google Scholar |

Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Research – II. Topical Studies in Oceanography 56(8–10), 554-577.
| Crossref | Google Scholar |

Torres R, Ampuero P (2009) Strong CO2 outgassing from high nutrient low chlorophyll coastal waters off central Chile (30°S): the role of dissolved iron. Estuarine, Coastal and Shelf Science 83(2), 126-132.
| Crossref | Google Scholar |

Turk D, Zappa CJ, Meinen CS, Christian JR, Ho DT, Dickson AG, McGillis WR (2010) Rain impacts on CO2 exchange in the western equatorial Pacific Ocean. Geophysical Research Letters 37(23), L23610.
| Crossref | Google Scholar |

Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine Chemistry 2(3), 203-215.
| Crossref | Google Scholar |

Wienders N, Arhan M, Mercier H (2000) Circulation at the western boundary of the south and equatorial Atlantic: exchanges with the ocean interior. Journal of Marine Research 58(6), 1007-1039.
| Crossref | Google Scholar |