Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Mapping the spatial distribution of wetlands in Argentina (South America) from a fusion of national databases

Irene Fabricante https://orcid.org/0000-0003-0873-3850 A , Priscilla Minotti https://orcid.org/0000-0001-7478-4598 A and Patricia Kandus https://orcid.org/0000-0001-6660-2977 A *
+ Author Affiliations
- Author Affiliations

A Laboratorio de Ecología, Teledetección y Ecoinformática (LETyE), Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de Mayo y Francia, CP 1650 San Martín, Argentina.

* Correspondence to: pkandus@unsam.edu.ar

Handling Editor: Nicholas Davidson

Marine and Freshwater Research - https://doi.org/10.1071/MF22111
Submitted: 24 September 2022  Accepted: 16 October 2022   Published online: 14 November 2022

© 2022 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context: There a large information gap on the spatial distribution and diversity of wetland types in South America.

Aims: We focus on mapping the spatial distribution of broad wetland types in Argentina, based on the integration of open spatial data sources developed by national government agencies.

Methods: We designed a two-tier process, as follows: we filtered broad wetland types described in the attributes of the spatial datasets and created a separate vector layer for each wetland class; we then ensembled the layers by populating a 25-m cell raster template.

Key results: Our WetCarto_AR layer indicates that wetlands cover 13.5% of mainland Argentina, being distributed throughout the country with a greater concentration towards the north-east, but patchy in the rest of the country. Palustrine is the dominant wetlands class followed by Riparian and Lacustrine. Global datasets underestimated wetland coverage, although the same large wetlands are recognised in all.

Conclusions: Our results make visible the known spatial extent of wetlands in Argentina and provide information to feed or validate global models.

Implications: Results stress the importance of existing local databases, which, even when generated for other purposes, can be a starting point for country or region wetland mapping.

Keywords: Argentina, global wetland datasets, local spatial datasets, national databases, spatial dataset integration, spatial distribution of wetlands, wetland mapping, wetland types diversity.


References

Aceñolaza PG, Manzano ASA, Rodriguez EE, Sanchez LC, Ronchi Virgolini AL, Giménez E, Demonte D, Marchetti ZY (2008) Biodiversidad de la región superior del complejo deltaico del Río Paraná. INSUGEO Miscelania Vol. 17(1), pp. 127–153. (Instituto Superior de Correlación Geológica, Centro Argentino de Información Científica y Tecnológica) Available at http://hdl.handle.net/11336/80300

Aeroterra-INTA (1995) Atlas de suelos de la República Argentina [CD-ROM]. (Aeroterra-INTA)

Allen, YC, Couvillion, BR, and Barras, JA (2012). Using multitemporal remote sensing imagery and inundation measures to improve land change estimates in coastal wetlands. Estuaries and Coasts 35, 190–200.
Using multitemporal remote sensing imagery and inundation measures to improve land change estimates in coastal wetlands.Crossref | GoogleScholarGoogle Scholar |

Allen, GH, Pavelsky, TM, Barefoot, EA, Lamb, MP, Butman, D, Tashie, A, and Gleason, CJ (2018). Similarity of stream width distributions across headwater systems. Nature Communications 9, 610.
Similarity of stream width distributions across headwater systems.Crossref | GoogleScholarGoogle Scholar |

Amani, M, Mahdavi, S, Afshar, M, Brisco, B, Huang, W, Mohammad, S, Mirzadeh, J, White, L, Banks, S, Montgomery, J, and Hopkinson, C (2019). Canadian wetland inventory using google earth engine: the first map and preliminary results. Remote Sensing 11, 842.
Canadian wetland inventory using google earth engine: the first map and preliminary results.Crossref | GoogleScholarGoogle Scholar |

Benzaquén L, Blanco DE, Bo R, Kandus P, Lingua G, Minotti P, Quintana R (Eds) (2017) Regiones de Humedales de la Argentina. (Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales–Wetlands International, Universidad Nacional de San Martín y Universidad de Buenos Aires: Buenos Aires, Argentina) Available at https://www.argentina.gob.ar/sites/default/files/regioneshumedbaja2.pdf

Benzaquén L, Lingua G, Firpo Lacoste F, Gonzalez Trilla G (2020) Documento Marco para el desarrollo del Inventario Nacional de Humedales de Argentina. Available at https://www.argentina.gob.ar/sites/default/files/documento_marco_inh_final.pdf [Verified February 2021]

Blanco DE, de la Balze VM (Eds) (2004) Los Turbales de la Patagonia: Bases para su inventario y la conservación de su biodiversidad. Publication number 19. (Wetlands International: Buenos Aires, Argentina) Available at https://lac.wetlands.org/download/1412/

Bortolus, A (2006). The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. Journal of Biogeography 33, 158–168.
The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history.Crossref | GoogleScholarGoogle Scholar |

Brinson MM (1993) A hydrogeomorphic classification for wetlands. Wetland research program technical report WRP-DE-4. US Army Corps of Engineers, Waterways Experiment Station, Washington, DC, USA.

Brinson MM (2011) Classification of wetlands. In ‘Wetlands’. (Ed. B LePage) pp. 95–113. (Springer: Dordrecht, Netherlands)

Brisco B (2015) Mapping the state and dynamics of boreal wetlands using synthetic aperture radar. In ‘Remote sensing of wetlands: applications and advances’. (Eds RW Tiner, MW Lang, VV Klemas) pp. 119–135. (CRC Press) https://doi.org/
| Crossref |

Canevari P, Blanco DE, Bucher EH, Castro G, Davidson I (Eds) (1999) Los Humedales de la Argentina: Clasificación, Situación Actual, Conservación y Legislación. Publication number 46, Wetlands International, Buenos Aires, Argentina.

Convention on Wetlands (2021) ‘Global Wetland Outlook: Special Edition 2021.’ (Secretariat of the Convention on Wetlands: Gland, Switzerland)

Cortés-Duque J, Rodríguez-Ortíz J (2014) ‘Memorias simposio taller de expertos. Construcción colectiva de criterios para la delimitación de humedales: retos e implicaciones del país.’ (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt: Bogotá DC, Colombia)

Davidson, NC (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research 65, 934–941.
How much wetland has the world lost? Long-term and recent trends in global wetland area.Crossref | GoogleScholarGoogle Scholar |

Davidson, NC, Fluet-Chouinard, E, and Finlayson, CM (2018). Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research 69, 620–627.
Global extent and distribution of wetlands: trends and issues.Crossref | GoogleScholarGoogle Scholar |

Day, JW, Christian, RR, Boesch, DM, Yáñez-Arancibia, A, Morris, J, Twilley, RR, Naylor, L, Schaffner, L, and Stevenson, C (2008). Consequences of climate change on the ecogeomorphology of coastal wetlands. Estuaries and Coasts 31, 477–491.
Consequences of climate change on the ecogeomorphology of coastal wetlands.Crossref | GoogleScholarGoogle Scholar |

Epele, LB, Grech, MG, Manzo, LM, Macchi, PA, Hermoso, V, Miserendino, ML, Bonada, N, and Cañedo-Argüelles, M (2021). Identifying high priority conservation areas for Patagonian wetlands biodiversity. Biodiversity and Conservation 30, 1359–1374.
Identifying high priority conservation areas for Patagonian wetlands biodiversity.Crossref | GoogleScholarGoogle Scholar |

Erwin, KL (2009). Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17, 71–84.
Wetlands and global climate change: the role of wetland restoration in a changing world.Crossref | GoogleScholarGoogle Scholar |

Estupinan-Suarez LM, Florez-Ayala C, Quinones MJ, Pacheco AM, Santos AC (2015) Detection and characterization of Colombian wetlands: integrating geospatial data with remote sensing derived data. Using ALOS PALSAR and MODIS imagery. In ‘Proceedings of the 36th international symposium on remote sensing of environment’, 11–15 May 2015, Berlin, Germany. (International Center for Remote Sensing of the Environment, Inc., ICRSE) Available at https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/375/2015/isprsarchives-XL-7-W3-375-2015.pdf

Faleiro, FV, Machado, RB, and Loyola, RD (2013). Defining spatial conservation priorities in the face of land-use and climate change. Biological Conservation 158, 248–257.
Defining spatial conservation priorities in the face of land-use and climate change.Crossref | GoogleScholarGoogle Scholar |

Farda, NM (2017). Multi-temporal land use mapping of coastal wetlands area using machine learning in google earth engine. IOP Conference Series: Earth and Environmental Science 98, 012042.
Multi-temporal land use mapping of coastal wetlands area using machine learning in google earth engine.Crossref | GoogleScholarGoogle Scholar |

Finlayson CM, D’Cruz R (2005) Inland water systems. In ‘Ecosystems and human well-being: current status and trends’. (Eds H Rashid, R Scholes, N Ash) pp. 551–583. (IslandPress: Washington, DC, USA)

Finlayson, CM, Davies, GT, Moomaw, WR, Chmura, GL, Natali, SM, Perry, JE, Roulet, N, and Sutton-Grier, AE (2019). The second warning to humanity – providing a context for wetland management and policy. Wetlands 39, 1–5.
The second warning to humanity – providing a context for wetland management and policy.Crossref | GoogleScholarGoogle Scholar |

Firpo Lacoste F (2018) Inventario de Humedales Salto-Chaqueños. In ‘El Agua Subterránea Recurso sin Fronteras: Humedales Vinculadas al Agua Subterránea’, Primera Edición. (Eds R García, E Castro, E Custodio, M Manzano, F Firpo Lacoste) pp. 197–204. (Editorial de la Universidad Nacional de Salta: Salta, Argentina)

Fluet-Chouinard, E, Lehner, B, Rebelo, L-M, Papa, F, and Hamilton, SK (2015). Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data. Remote Sensing of Environment 158, 348–361.
Development of a global inundation map at high spatial resolution from topographic downscaling of coarse-scale remote sensing data.Crossref | GoogleScholarGoogle Scholar |

Fundación Vida Silvestre Argentina and Fundación para el Desarrollo en Justicia y Paz (2007) Zonificación de los Bajos Submeridionales del Norte Santafesino. Una Herramienta para la Planificación del Desarrollo Productivo y la Conservación de la Biodiversidad del Humedal. (Vida Silvestre Argentina: Buenos Aires, Argentina) Available at https://www.produccion-animal.com.ar/suelos_ganaderos/35-Bajos_Submeridionales.pdf

Gallant, AL (2015). The challenges of remote monitoring of wetlands. Remote Sensing 7, 10938–10950.
The challenges of remote monitoring of wetlands.Crossref | GoogleScholarGoogle Scholar |

Gonzalez, E, González Trilla, G, San Martin, L, Grimson, R, and Kandus, P (2019). Vegetation patterns in a South American coastal wetland using high-resolution imagery. Journal of Maps 15, 642–650.
Vegetation patterns in a South American coastal wetland using high-resolution imagery.Crossref | GoogleScholarGoogle Scholar |

Gumbricht, T, Roman-Cuesta, RM, Verchot, L, Herold, M, Wittmann, F, Householder, E, Herold, N, and Murdiyarso, D (2017a). An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology 23, 3581–3599.
An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor.Crossref | GoogleScholarGoogle Scholar |

Gumbricht T, Román-Cuesta RM, Verchot LV, Herold M, Wittmann F, Householder E, Herold N, Murdiyarso D (2017b) Tropical and subtropical wetlands distribution version 2. (Center for International Forestry Research, CIFOR)

Guo, M, Li, J, Sheng, C, Xu, J, and Wu, L (2017). A review of wetland remote sensing. Sensors 17, 777.
A review of wetland remote sensing.Crossref | GoogleScholarGoogle Scholar |

Hu, S, Niu, Z, and Chen, Y (2017). Global wetland datasets: a review. Wetlands 37, 807–817.
Global wetland datasets: a review.Crossref | GoogleScholarGoogle Scholar |

Instituto Geográfico Nacional (2019) Capas SIG. (IGN) Available at https://www.ign.gob.ar/NuestrasActividades/InformacionGeoespacial/CapasSIG [Verified March 2019]

Instituto Nacional de Tecnología Agropecuaria (1993) Cartas de Suelos de la República Argentina. (Centro de Investigaciones de recursos Naturales, Instituto de Suelos área de Investigación en Cartografía de Suelos y Evaluación de Tierras) Available at http://anterior.inta.gov.ar/suelos/cartas/

Iriondo, M (2004). Large wetlands of South America: a model for Quaternary humid environments. Quaternary International 114, 3–9.
Large wetlands of South America: a model for Quaternary humid environments.Crossref | GoogleScholarGoogle Scholar |

Irisarri, JGN, Oesterheld, M, Paruelo, JM, and Texeira, MA (2012). Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach. Journal of Vegetation Science 23, 114–126.
Patterns and controls of above-ground net primary production in meadows of Patagonia. A remote sensing approach.Crossref | GoogleScholarGoogle Scholar |

Isacch, JP, Costa, CSB, Rodríguez-Gallego, L, Conde, D, Escapa, M, Gagliardini, DA, and Iribarne, OO (2006). Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography 33, 888–900.
Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast.Crossref | GoogleScholarGoogle Scholar |

Iturraspe R, Urciuolo A, Iturraspe R (2012) Spatial analysis and description of eastern peatlands of Tierra del Fuego, Argentina. In ‘Mires from pole to pole’. (Eds T Lindholm, R Heikkilä) The Finnish Environment, Vol. 38, pp. 385–399. (The Finnish Environment Institute) Available at http://www.imcg.net/media/download_gallery/books/mires_from_pole_to_pole.pdf

Izquierdo, AE, Foguet, J, and Ricardo Grau, H (2015). Mapping and spatial characterization of Argentine High Andean peatbogs. Wetlands Ecology and Management 23, 963–976.
Mapping and spatial characterization of Argentine High Andean peatbogs.Crossref | GoogleScholarGoogle Scholar |

Joosten H, Clarke D (2002) ‘Wise use of mires and peatlands. Vol. 304.’ (International Mire Conservation Group and International Peat Society)

Junk, WJ, and Cunha, CN (2005). Pantanal: a large South American wetland at a crossroads. Ecological Engineering 24, 391–401.
Pantanal: a large South American wetland at a crossroads.Crossref | GoogleScholarGoogle Scholar |

Junk, WJ, An, S, Finlayson, CM, Gopal, B, Květ, J, Mitchell, SA, Mitsch, WJ, and Robarts, RD (2013). Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75, 151–167.
Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis.Crossref | GoogleScholarGoogle Scholar |

Kandus P, Minotti P (2018) Propuesta de un marco conceptual y lineamientos metodológicos para el Inventario Nacional de Humedales. Informe final elaborado por solicitud del Ministerio de Ambiente y Desarrollo Sustentable. (3iA-UNSAM) https://www.argentina.gob.ar/ambiente/agua/humedales/inventarionacional/marco-conceptual-metodologico [Verified February 2021]

Kandus, P, Minotti, P, and Malvárez, AI (2008). Distribution of wetlands in Argentina estimated from soil charts. Acta Scientiarum. Biological Sciences 30, 403–409.
Distribution of wetlands in Argentina estimated from soil charts.Crossref | GoogleScholarGoogle Scholar |

Kandus P, Quintana R, Minotti PG, Oddi JP, Baigún C, Gonzalez Trilla G, Ceballos D (2010) Ecosistemas de humedal y una perspectiva hidrogeomórfica como marco para la valoración ecológica de sus bienes y servicios. In ‘Valoración de Servicios Ecosistémicos. Conceptos, herramientas y aplicaciones para el ordenamiento territorial’. (Eds P Laterra, E Jobbágy, J Paruelo) pp. 265–292. (Ediciones INTA)

Kandus P, Minotti P, Fabricante I, Ramonell C (2017) Identificación y Delimitación de Humedales de Argentina. In ‘Regiones de Humedales de la Argentina’. (Eds L Benzaquén, DE Blanco, R Bo, P Kandus, G Lingua, P Minotti, R Quintana) (Ministerio de Ambiente y Desarrollo Sustentable, Fundación Humedales/Wetlands International, Universidad Nacional de San Martín y Universidad de Buenos Aires: Buenos Aires, Argentina) Available at https://www.argentina.gob.ar/sites/default/files/regioneshumedbaja2.pdf

Kandus, P, Minotti, PG, Morandeira, NS, Grimson, R, Gonzalez Trilla, G, Gonzalez, EB, San Martin, L, and Gayol, MP (2018). Remote sensing of wetlands in South America: status and challenges. International Journal of Remote Sensing 39, 993–1016.
Remote sensing of wetlands in South America: status and challenges.Crossref | GoogleScholarGoogle Scholar |

Karlin MS, Karlin U, Coirini RO, Reati GJ, Zapata RM (2010a) ‘El Chaco Árido.’ (Universidad Nacional de Córdoba)

Karlin UO, Karlin MS, Ruiz Posse E (2010b) Ambientes de vegetación. In ‘Manejo Sustentabledel Ecosistema Salinas Grandes, Chaco Árido’. (Eds RO Coirini, MS Karlin, GJ Reati) pp. 91–118. (Encuentro Grupo Editor)

Lancelotti, JL, Pozzi, LM, Marquez, F, Yorio, PM, and Pascual, MA (2009). Waterbird occurrence and abundance in the Strobel Plateau, Patagonia, Argentina. El Hornero 24, 13–20.

Lehner, B, and Döll, P (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296, 1–22.
Development and validation of a global database of lakes, reservoirs and wetlands.Crossref | GoogleScholarGoogle Scholar |

López Steinmetz, RL, Salvi, S, Sarchi, C, Santamans, C, and López Steinmetz, LC (2020). Lithium and Brine geochemistry in the Salars of the Southern Puna, Andean Plateau of Argentina. Economic Geology 115, 1079–1096.
Lithium and Brine geochemistry in the Salars of the Southern Puna, Andean Plateau of Argentina.Crossref | GoogleScholarGoogle Scholar |

Maltchik, L (2003). Three new wetlands inventories in Brazil. Interciencia 28, 421–423.

Maltchik, L, Caleffi, V, Stenert, C, Batzer, DP, Fernandez Piedade, MT, and Junk, WJ (2018). Legislation for wetland conservation in Brazil: are existing terms and definitions sufficient? Environmental Conservation 45, 301–305.
Legislation for wetland conservation in Brazil: are existing terms and definitions sufficient?Crossref | GoogleScholarGoogle Scholar |

Marchetti, ZY, Latrubesse, EM, Pereira, MS, and Ramonell, CG (2013). Vegetation and its relationship with geomorphologic units in the Parana River floodplain, Argentina. Journal of South American Earth Sciences 46, 122–136.
Vegetation and its relationship with geomorphologic units in the Parana River floodplain, Argentina.Crossref | GoogleScholarGoogle Scholar |

Marchetti, ZY, Minotti, PG, Ramonell, CG, Schivo, F, and Kandus, P (2016). NDVI patterns as indicator of morphodynamic activity in the middle Paraná River floodplain. Geomorphology 253, 146–158.
NDVI patterns as indicator of morphodynamic activity in the middle Paraná River floodplain.Crossref | GoogleScholarGoogle Scholar |

Mazzoni, E, and Rabassa, J (2013). Types and internal hydro-geomorphologic variability of mallines (wet-meadows) of Patagonia: emphasis on volcanic plateaus. Journal of South American Earth Sciences 46, 170–182.
Types and internal hydro-geomorphologic variability of mallines (wet-meadows) of Patagonia: emphasis on volcanic plateaus.Crossref | GoogleScholarGoogle Scholar |

Mazzoni E, Rabassa J (2018) Wetlands associated to the Basaltic Plateaus: spatial heterogeneity and internal variability of wetlands. Case Study: Mallín Tropezón. In ‘Volcanic Landscapes and Associated Wetlands of Lowland Patagonia’. (Eds E Mazzoni, J Rabassa) The Latin American Studies Book Series, pp. 231–270. (Springer: Cham, Switzerland). https://doi.org/
| Crossref |

Mazzoni E, Vázquez M (2004) ‘Ecosistemas de Mallines y paisajes de la Patagonia Austral (provincia de Santa Cruz).’ (Ediciones INTA)

Minotti P, Ramonell C, Kandus P (2013) Metodología. In ‘Inventario de los humedales de Argentina. Sistemas de paisajes de humedales del Corredor Fluvial Paraná-Paraguay’. (Eds L Benzaquén, DE Blanco, RF Bó, P Kandus, GF Lingua, P Minotti, RD Quintana, S Sverlij, L Vidal) Proyecto GEF 4206 – PNUD ARG/10/003, pp. 35–45. (Secretaría de Ambiente y Desarrollo Sustentable de la Nación: Buenos Aires, Argentina)

Morello J, Matteucci SD, Rodriguez AF, Silva ME (2012) ‘Ecorregiones y complejos ecosistemicos argentinos’, 1st edn. (Facultad de Arquitectura Desarrollo y Urbanismo: Buenos Aires, Argentina)

Movia C (1984) Tipología de mallines. In ‘Curso de campo en sistemas ecogeomorfológicos: Guía de excursiones’. (Eds J Rabassa, A Brandani, O Capua, E Ottonello) pp. 112–137. (Departamento de Postgrado, Universidad Nacional del Comahue: Neuquén, Argentina)

Neiff JJ (1999) El régimen de pulsos en ríos y grandes humedales de Sudamerica. In ‘Tópicos Sobre Humedales Subtropicales y Templados de Sudamerica’. (Ed. AI Malvárez) pp. 99–150. (MaB UNESCO)

Neiff JJ, Malvárez AI (2004) Grandes Humedales Fluviales. In ‘Documentos del curso-taller: bases ecológicas para la clasificación e inventario de humedales en Argentina’. (Eds AI Malvárez, R Bó) pp. 77–85. (Ana Inés Malvárez editora: Buenos Aires, Argentina) Available at https://lac.wetlands.org/wp-content/uploads/sites/2/dlm_uploads/2019/09/Documentos-del-Curso-Taller.-Bases-ecológicas-para-la-clasificación-e-inventario-de-humedales-en-Argentina.-2004.pdf

Neiff, JJ, Poi de Neiff, A, and Canón Verón, MB (2009). The role of vegetated areas on fish assemblage of the Paraná River floodplain: effects of different hydrological conditions. Neotropical Ichthyology 7, 39–48.
The role of vegetated areas on fish assemblage of the Paraná River floodplain: effects of different hydrological conditions.Crossref | GoogleScholarGoogle Scholar |

Olmsted I (1993) Wetlands of Mexico. In ‘Wetlands of the world: inventory, ecology and management. Vol. I’. (Eds DF Whigham, D Dykyjová, S Hejný) Handbook of Vegetation Science, Vol. 15-2, pp. 637–677. (Springer: Dordrecht, Netherlands). https://doi.org/
| Crossref |

Pande-Chhetri, R, Abd-Elrahman, A, Liu, T, Morton, J, and Wilhelm, VL (2017). Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. European Journal of Remote Sensing 50, 564–576.
Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery.Crossref | GoogleScholarGoogle Scholar |

Pereyra FX, Cavallaro S, Villegas D (2004) Ecorregiones de la Argentina. SEGEMAR-AACS-GAEA, Anales 37, SEGEMAR-AACS-GAEA, Buenos Aires, Argentina.

Perotti, MG, Dieguez, MC, and Jara, FG (2005). State of the knowledge of north Patagonian wetlands (Argentina): major aspects and importance for regional biodiversity conservation. Revista Chilena de Historia Natural 78, 723–737.
State of the knowledge of north Patagonian wetlands (Argentina): major aspects and importance for regional biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Ponzio KJ, Todd OZ, Davies GT, LePage B, Sundareshwar PV, Miller SJ, Bochnak AMK, Phelps SA, Guyette MQ, Chowanski KM, Kunza LA, Pellechia PJ, Gleason RA, Sandvik C (2019) Building resiliency to climate change through wetland management and restoration. In ‘Wetlands: ecosystem services, restoration and wise use’. (Eds S An, JTA Verhoeven) Ecological Studies (Analysis and Synthesis), Vol. 238, pp. 255–309. (Springer: Cham, Switzerland) https://doi.org/
| Crossref |

Rabassa J, Coronato A, Roig C (1996) The peat bogs of Tierra del Fuego, Argentina. In ‘Global peat resources’. (Ed. E Lappalainen) pp. 261–266. (International Peat Society Publisher: Jyskä, Finland)

Ramsar Convention (1990) Recommendation 4.7: mechanisms for improved application of the Ramsar Convention. In ‘4th Meeting of the conference of contracting parties’, 27 June-4 July 1990, Montreux, Switzerland. (Ramsar Convention:) Available at https://www.ramsar.org/sites/default/files/documents/library/key_rec_4.07e.pdf

Sandi, SG, Rodríguez, JF, Saintilan, N, Riccardi, G, and Saco, PM (2018). Rising tides, rising gates: the complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions. Advances in Water Resources 114, 135–148.
Rising tides, rising gates: the complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions.Crossref | GoogleScholarGoogle Scholar |

Sandi, SG, Rodriguez, JF, Saintilan, N, et al. (2020). Resilience to drought of dryland wetlands threatened by climate change. Scientific Reports 10, 13232.
Resilience to drought of dryland wetlands threatened by climate change.Crossref | GoogleScholarGoogle Scholar |

Secretaría de Ambiente y Desarrollo Sustentable de la Nación (2007) ‘Primer Inventario Nacional de Bosques Nativos: Informe nacional.’ 1st edn. (Secretaría de Ambiente y Desarrollo Sustentable de la Nación: Buenos Aires, Argentina) Available at https://www.argentina.gob.ar/sites/default/files/primer_inventario_nacional_-_informe_nacional_1.pdf [Verified July 2020]

Semeniuk CA, Semeniuk V (2016) Wetland classification: geomorphic–hydrologic system. In ‘The wetland book’. (Eds CM Finlayson, M Everard, K Irvine, RJ McInnes, BA Middleton, AA van Dam, NC Davidson) pp. 1–10. (Springer Science+Business Media: Dordrecht, Netherlands) https://doi.org/
| Crossref |

Servicio de Hidrografia Naval (2016a) Carta Náutica Raster : “Río de la Plata Exterior.” Available at http://www.hidro.gov.ar/nautica/CNRaster.asp?r=2

Servicio de Hidrografia Naval (2016b) Carta Náutica Raster : “Mar Argentino y Puertos del Litoral Atlántico.” Available at http://www.hidro.gov.ar/nautica/CNRaster.asp?r=7

Taillardat, P, Thompson, BS, Garneau, M, Trottier, K, and Friess, DA (2020). Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129.
Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration.Crossref | GoogleScholarGoogle Scholar |

Tamiminia, H, Salehi, B, Mahdianpari, M, Quackenbush, L, Adeli, S, and Brisco, B (2020). Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS Journal of Photogrammetry and Remote Sensing 164, 152–170.
Google Earth Engine for geo-big data applications: a meta-analysis and systematic review.Crossref | GoogleScholarGoogle Scholar |

Tanco, R, and Kruse, E (2001). Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina. Hydrogeology Journal 9, 339–347.
Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina.Crossref | GoogleScholarGoogle Scholar |

Tiner RW (2017) ‘Wetlands indicators. A Guide to Wetland formation, identification, delineation, classification and mapping’, 2nd edn. (CRC Press)

Tootchi, A, Jost, A, and Ducharne, A (2019). Multi-source global wetland mapping: combining surface water imagery and groundwater constraints. Earth System Science Data 11, 189–220.
Multi-source global wetland mapping: combining surface water imagery and groundwater constraints.Crossref | GoogleScholarGoogle Scholar |

Tottrup C, Druc D, Tong X, Barvels E, Christensen M, Grogan K, Huber S, Crane S (2020) ‘The global wetland extent: towards a high-resolution global-level inventory of the spatial extent of vegetated wetlands.’ (UN Environment: Nairobi, Kenya) Available at https://files.habitatseven.com/unwater/Measuring-the-spatial-extent-of-wetlands-globally_Detailed_technical_specifications.pdf [Verified June 2021]

UNEP (2020) Measuring change in the extent of water-related ecosystems over time: sustainable development goal monitoring methodology indicator 6.6.1. Available at https://files.habitatseven.com/unwater/SDG-Monitoring-Methodology-for-Indicator-6.6.1.pdf [Verified June 2021]

van Asselen, S, Verburg, PH, Vermaat, JE, and Janse, JH (2013). Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8, e81292.
Drivers of wetland conversion: a global meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Veblen TT, Young KR, Orme AR (2007) ‘The physical geography of South America.’ (Oxford University Press)

Vepraskas MJ, Craft CB (2016) ‘Wetland soils. genesis, hydrology, landscapes and classification’, 2nd edn. (CRC Press)

Volante JN, Alday S, Allogia M, Ayesa J, et al. (2009) Cobertura del suelo de la República Argentina. Año 2006–2007 (LCCS-FAO). (INTA) Available at https://inta.gob.ar/documentos/cobertura-del-suelo-de-la-republica-argentina.-ano-2006-2007-lccs-fao

Were, D, Kansiime, F, Fetahi, T, Cooper, A, and Jjuuko, C (2019). Carbon sequestration by wetlands: a critical review of enhancement measures for climate change mitigation. Earth Systems and Environment 3, 327–340.
Carbon sequestration by wetlands: a critical review of enhancement measures for climate change mitigation.Crossref | GoogleScholarGoogle Scholar |

Wittmann, F, Householder, E, de Oliveira Wittmann, A, Lopes, A, Junk, WJ, and Piedade, MT (2015). Implementation of the Ramsar Convention on South American wetlands: an update. Research and Reports in Biodiversity Studies 2015, 47–58.
Implementation of the Ramsar Convention on South American wetlands: an update.Crossref | GoogleScholarGoogle Scholar |

Xi, Y, Peng, S, Ciais, P, and Chen, Y (2021). Future impacts of climate change on inland Ramsar wetlands. Nature Climate Change 11, 45–51.
Future impacts of climate change on inland Ramsar wetlands.Crossref | GoogleScholarGoogle Scholar |