Increasing depth reduces macrophyte coverage but increasing transparency promotes composition turnover through environmental thresholds
Yasmin M. Canalli A * , Bruno E. Soares B and Cassia M. Sakuragui AA Departamento de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
B Department of Biological Sciences, University of Toronto—Scarborough, Toronto, ON, Canada.
Marine and Freshwater Research 74(2) 157-163 https://doi.org/10.1071/MF22097
Submitted: 3 May 2022 Accepted: 8 December 2022 Published: 17 January 2023
© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing
Abstract
Context: Environmental filters modify the coverage and frequency patterns of macrophyte communities.
Aims: We characterised the thresholds in depth and transparency at which the macrophyte distribution shifted in an Atlantic Forested wetland.
Methods: Macrophyte communities were characterised in 150 plots divided into 6 transects.
Key results: Threshold indicator taxa analysis (TITAN) indicated that free-floating life forms respond negatively to depth and transparency increase. Rooted-floating species responded negatively to an increase in depth and transparency; by contrast, submerged species responded positively to increased transparency.
Conclusion: TITAN also highlighted that the entire macrophyte community responded negatively to increased depth but exhibited a synchronous turnover among species responding positively and negatively to transparency.
Implications: Our results demonstrated that macrophyte responses to increasing depth and transparency are non-linear and depend on species life forms.
Keywords: abiotic factors, aquatic plant, environmental filter, floodplain, hydrophyte, life forms, threshold responses, wetland.
References
Alahuhta, J, Lindholm, M, Bove, CP, et al. (2018). Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors. Oecologia 188, 1167–1182.| Global patterns in the metacommunity structuring of lake macrophytes: regional variations and driving factors.Crossref | GoogleScholarGoogle Scholar |
Baker, ME, and King, RS (2010). A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods in Ecology and Evolution 1, 25–37.
| A new method for detecting and interpreting biodiversity and ecological community thresholds.Crossref | GoogleScholarGoogle Scholar |
Bakker, ES, Sarneel, JM, Gulati, RD, et al. (2013). Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710, 23–37.
| Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints.Crossref | GoogleScholarGoogle Scholar |
Baleeiro, PC, Moreira, ADR, Silva, NG, et al. (2017). Flora do Rio de Janeiro: Lentibulariaceae. Rodriguésia 68, 59–71.
| Flora do Rio de Janeiro: Lentibulariaceae.Crossref | GoogleScholarGoogle Scholar |
Barros, ICL, and Xavier, SRS (2007). Salviniaceae do Estado de Pernambuco, Brasil. Revista Brasileira de Biociências 5, 246–248.
Bernardes, LMCB (1952). Tipos de Clima do Estado do Rio de Janeiro. Revista Brasileira de Geografia Ano XIV, 57–81.
Canalli, YdM, and Bove, CP (2017). Flora do Rio de Janeiro: Alismataceae. Rodriguésia 68, 17–28.
| Flora do Rio de Janeiro: Alismataceae.Crossref | GoogleScholarGoogle Scholar |
Chen, J, Ren, W, Chou, Q, et al. (2020). Alterations in biomass allocation indicate the adaptation of submersed macrophytes to low-light stress. Ecological Indicators 113, 106235.
| Alterations in biomass allocation indicate the adaptation of submersed macrophytes to low-light stress.Crossref | GoogleScholarGoogle Scholar |
Correia, AJ, and Bove, CP (2017). Flora do Rio de Janeiro: Cabombaceae. Rodriguésia 68, 33–35.
| Flora do Rio de Janeiro: Cabombaceae.Crossref | GoogleScholarGoogle Scholar |
Cunha, SB (1991). Rectificação do Rio S. João: efeitos na morfologia do canal e na ecologia. Finisterra: Revista Portuguesa de Geografia 26, 185–193.
| Rectificação do Rio S. João: efeitos na morfologia do canal e na ecologia.Crossref | GoogleScholarGoogle Scholar |
da Silva CES, Kruschewsky GC, Junqueira AA, et al. (2017) Benefícios das unidades de conservação na bacia hidrográfica do rio São João (RJ) para a preservação de espécies da Mata Atlântica. In ‘6o Simpósio de gestão ambiental e biodiversidade’, 20–23 June 2017, Três Rios, Brazil. (Eds MA Milward-de-Azevedo, E Cortines) pp. 181–187. (SIGABI) Available at https://www.itr.ufrrj.br/sigabi/wp-content/uploads/6_sigabi/Sumarizado/SILVA_CARLOS_68.pdf [In Portuguese]
Diego-Pérez, N, Álvarez, CHR, and Martínez, E (2001). Un nuevo registro de Cyperus para México. Acta Botanica Mexicana 55, 17–20.
| Un nuevo registro de Cyperus para México.Crossref | GoogleScholarGoogle Scholar |
Dufrene, M, and Legendre, P (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.
| Species assemblages and indicator species: the need for a flexible asymmetrical approach.Crossref | GoogleScholarGoogle Scholar |
Estlander, S, Nurminen, L, Olin, M, et al. (2009). Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia 620, 109–120.
| Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats.Crossref | GoogleScholarGoogle Scholar |
Fu, H, Yuan, G, Lou, Q, et al. (2018). Functional traits mediated cascading effects of water depth and light availability on temporal stability of a macrophyte species. Ecological Indicators 89, 168–174.
| Functional traits mediated cascading effects of water depth and light availability on temporal stability of a macrophyte species.Crossref | GoogleScholarGoogle Scholar |
González Elizondo, MS, González Elizondo, M, Tena Flores, JA, et al. (2008). Sinopsis de Scirpus s.l. (Cyperaceae) para México. Acta Botanica Mexicana 82, 15–41.
| Sinopsis de Scirpus s.l. (Cyperaceae) para México.Crossref | GoogleScholarGoogle Scholar |
Guimarães, MGQ, Moreira, ADR, and Bove, CP (2017). Flora do Rio de Janeiro: Pontederiaceae. Rodriguésia 68, 103–108.
| Flora do Rio de Janeiro: Pontederiaceae.Crossref | GoogleScholarGoogle Scholar |
He, L, Zhu, T, Wu, Y, et al. (2019). Littoral slope, water depth and alternative response strategies to light attenuation shape the distribution of submerged macrophytes in a mesotrophic lake. Frontiers in Plant Science 10, 169.
| Littoral slope, water depth and alternative response strategies to light attenuation shape the distribution of submerged macrophytes in a mesotrophic lake.Crossref | GoogleScholarGoogle Scholar |
Ichaso, CLF (1966). Scrophulariaceae do estado da Guanabara. Rodriguésia 25, 161–179.
Irgang, BE, Pedralli, G, and Waechter, JI (1984). Macrófitos aquáticos da Estação ecológica do Taim, Rio Grande do Sul, Brasil. Roessleria 6, 395–404.
Lourenço, AR, and Bove, CP (2017). Flora do Rio de Janeiro: Hydrocharitaceae. Rodriguésia 68, 43–50.
| Flora do Rio de Janeiro: Hydrocharitaceae.Crossref | GoogleScholarGoogle Scholar |
Lukács, BA, Tóthmérész, B, Borics, G, et al. (2015). Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica 53, 74–83.
| Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary).Crossref | GoogleScholarGoogle Scholar |
Middelboe, AL, and Markager, S (1997). Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37, 553–568.
| Depth limits and minimum light requirements of freshwater macrophytes.Crossref | GoogleScholarGoogle Scholar |
Moreira, ADR, and Bove, CP (2017). Flora do Rio de Janeiro: Nymphaeaceae. Rodriguésia 68, 91–97.
| Flora do Rio de Janeiro: Nymphaeaceae.Crossref | GoogleScholarGoogle Scholar |
Neid SL (2006) Utricularia minor L. (lesser bladderwort): a technical conservation assessment. Rocky Mountain Region Species Conservation Project. (USDA Forest Service) Available at https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5206905.pdf
Netten, JJC, Arts, GHP, Gylstra, R, van Nes, EH, Scheffer, M, and Roijackers, RMM (2010). Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms. Fundamental and Applied Limnology 177, 125–132.
| Effect of temperature and nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in mesocosms.Crossref | GoogleScholarGoogle Scholar |
Pierzchala, L, and Sierka, E (2020). Do submerged plants improve the water quality in mining subsidence reservoirs? Applied Ecology and Environmental Research 18, 5661–5672.
| Do submerged plants improve the water quality in mining subsidence reservoirs?Crossref | GoogleScholarGoogle Scholar |
Scheffer, M, and van Nes, EH (2007). Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584, 455–466.
| Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size.Crossref | GoogleScholarGoogle Scholar |
Scheffer, M, Hosper, SH, Meijer, M-L, et al. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8, 275–279.
| Alternative equilibria in shallow lakes.Crossref | GoogleScholarGoogle Scholar |
Schneider, B, Cunha, ER, Marchese, M, et al. (2015). Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain. Aquatic Botany 121, 67–75.
| Explanatory variables associated with diversity and composition of aquatic macrophytes in a large subtropical river floodplain.Crossref | GoogleScholarGoogle Scholar |
Schneider, B, Cunha, ER, Marchese, M, et al. (2018). Associations between macrophyte life forms and environmental and morphometric factors in a large sub-tropical floodplain. Frontiers in Plant Science 9, 195.
| Associations between macrophyte life forms and environmental and morphometric factors in a large sub-tropical floodplain.Crossref | GoogleScholarGoogle Scholar |
Thomaz, SM (2002). Fatores ecológicos associados à colonização e ao desenvolvimento de macrófitas aquáticas e desafios de manejo. Planta Daninha 20, 21–33.
| Fatores ecológicos associados à colonização e ao desenvolvimento de macrófitas aquáticas e desafios de manejo.Crossref | GoogleScholarGoogle Scholar |
Wagner, WL, Hoch, PC, and Raven, PH (2007). Revised classification of the Onagraceae. Systematic Botany Monographs 83, 1–240.
Ye, B, Chu, Z, Wu, A, et al. (2018). Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake. PLoS ONE 13, e0193176.
| Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake.Crossref | GoogleScholarGoogle Scholar |