Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Environmental factors and predator abundance predict the distribution and occurrence of two sympatric urchin species at Ningaloo Reef, Western Australia

Emma L. Westlake https://orcid.org/0000-0001-8439-2643 A D , Cindy Bessey A B , Rebecca Fisher B C , Damian P. Thomson A and Michael D. E. Haywood A
+ Author Affiliations
- Author Affiliations

A Commonwealth Scientific and Industrial Research Organisation, Oceans and Atmosphere, 35 Stirling Highway, Crawley, WA 6009, Australia.

B University of Western Australia, School of Plant Biology and the Oceans Institute, 35 Stirling Highway, Crawley, WA 6009, Australia.

C Australian Institute of Marine Science, 35 Stirling Highway, Crawley, WA 6009, Australia.

D Corresponding author. Email: emma.westlake@csiro.au

Marine and Freshwater Research 72(12) 1711-1721 https://doi.org/10.1071/MF21091
Submitted: 24 March 2021  Accepted: 13 July 2021   Published: 23 August 2021

Journal Compilation © CSIRO 2021 Open Access CC BY

Abstract

Sea urchins can play a critical ecological role in the functioning of marine benthic ecosystems, mediating competitive interactions between corals and algae. Yet, little is known about factors affecting urchin distribution in intact coral reef systems. This study aims to determine the spatial distribution of two sympatric urchin species, Echinometra mathaei and Echinostrephus molaris, and potential factors contributing to this, within the intact coral reef system of Ningaloo Marine Park, north-western Western Australia. Benthic photographs and surveys were conducted on SCUBA at 126 sites across the Park to determine urchin presence, rugosity, substrate cover, water velocity, and fish predation for each site. Generalised additive models found that E. mathaei presence was positively related to algal cover, rugosity and non-sanctuary zones, suggesting that distribution may be driven by foraging behaviour, habitat complexity and predation. Echinostrephus molaris presence was positively related to habitat and region, suggesting its distribution may be largely driven by hydrodynamics, feeding strategy and regional variation. This study highlighted species-habitat associations and the complexities of these in structuring urchin communities. Although occupying similar niches, the predominantly non-overlapping feeding preferences, and morphological and behavioural differences between E. mathaei and E. molaris enable these species to coexist within the intact reef system of Ningaloo Marine Park.

Keywords: sea urchins, distribution, Echinometra mathaei, Echinostrephus molaris, predation, management zones.


References

Abdo, D. A., Seager, J. W., Harvey, E. S., McDonald, J. I., Kendrick, G. A., and Shortis, M. R. (2006). Efficiently measuring complex sessile epibenthic organisms using a novel photogrammetric technique. Journal of Experimental Marine Biology and Ecology 339, 120–133.
Efficiently measuring complex sessile epibenthic organisms using a novel photogrammetric technique.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L. (1993). Spatial heterogeneity, sea urchin grazing and habitat structure on reefs in temperate Australia. Ecology 74, 292–302.
Spatial heterogeneity, sea urchin grazing and habitat structure on reefs in temperate Australia.Crossref | GoogleScholarGoogle Scholar |

Asgaard, U., and Bromley, R. G. (2008). Echinometrid sea urchins, their trophic styles and corresponding bioerosion. In ‘Current Developments in Bioerosion’. (Eds M. Wisshak and L. Tapanila.) Erlangen Earth Conference Series, pp. 279–304. (Springer-Verlag.)
| Crossref |

Babcock, R., Haywood, M., Vanderklift, M., Clapin, G., Kleczkowski, M., Dennis, D., Skewes, T., Milton, D., Murphy, N., Pillans, R., and Limbourn, A. (2008). Ecosystem impacts of human usage and effectiveness of zoning for biodiversity conservation: broad-scale fish census. Final analysis and recommendations 2007. CSIRO Marine and Atmospheric Research.

Bak, R. P. M. (1990). Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Marine Ecology Progress Series 66, 267–272.
Patterns of echinoid bioerosion in two Pacific coral reef lagoons.Crossref | GoogleScholarGoogle Scholar |

Beck, M. W. (1995). Size-specific shelter limitation in stone crabs: a test of the demographic bottleneck hypothesis. Ecology 76, 968–980.
Size-specific shelter limitation in stone crabs: a test of the demographic bottleneck hypothesis.Crossref | GoogleScholarGoogle Scholar |

Bellwood, D. R., Hughes, T. P., Folke, C., and Nystrom, M. (2004). Confronting the coral reef crisis. Nature 429, 827–833.
Confronting the coral reef crisis.Crossref | GoogleScholarGoogle Scholar | 15215854PubMed |

Benedetti-Cecchi, L., and Cinelli, F. (1995). Habitat heterogeneity, sea urchin grazing and the distribution of algae in littoral rock pools on the west coast of Italy (western Mediterranean). Marine Ecology Progress Series 126, 203–212.
Habitat heterogeneity, sea urchin grazing and the distribution of algae in littoral rock pools on the west coast of Italy (western Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Bonaviri, C., Vega Fernández, T. V., Fanelli, G., Badalamenti, F., and Gianguzza, P. (2011). Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Marine Biology 158, 2505–2513.
Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research – Oceans 104, 7649–7666.
A third-generation wave model for coastal regions: 1. Model description and validation.Crossref | GoogleScholarGoogle Scholar |

Bronstein, O., and Loya, Y. (2014). Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs. Journal of Experimental Marine Biology and Ecology 456, 8–17.
Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs.Crossref | GoogleScholarGoogle Scholar |

Brown-Saracino, J., Peckol, P., Allen Curran, H., and Robbart, M. L. (2007). Spatial variation in sea urchins, fish predators, and bioerosion rates on coral reefs of Belize. Coral Reefs 26, 71–78.
Spatial variation in sea urchins, fish predators, and bioerosion rates on coral reefs of Belize.Crossref | GoogleScholarGoogle Scholar |

Browne, N. K., Smithers, S. G., and Perry, C. T. (2013). Carbonate and terrigenous sediment budgets for two inshore turbid reefs on the central Great Barrier Reef. Marine Geology 346, 101–123.
Carbonate and terrigenous sediment budgets for two inshore turbid reefs on the central Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Burt, J. A., Feary, D. A., Usseglio, P., Bauman, A., and Sale, P. F. (2010). The influence of wave exposure on coral community development on man-made breakwater reefs, with a comparison to a natural reef. Bulletin of Marine Science 86, 839–859.
The influence of wave exposure on coral community development on man-made breakwater reefs, with a comparison to a natural reef.Crossref | GoogleScholarGoogle Scholar |

Campbell, A. C., Dart, J. K. G., Head, S. M., and Ormond, R. F. G. (1973). The feeding activity of Echinostrephus molaris (de Blainville) in the Central Red Sea. Marine Behaviour and Physiology 2, 155–169.
The feeding activity of Echinostrephus molaris (de Blainville) in the Central Red Sea.Crossref | GoogleScholarGoogle Scholar |

Carpenter, R. C. (1984). Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Marine Biology 82, 101–108.
Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum.Crossref | GoogleScholarGoogle Scholar |

Carreiro-Silva, M., and McClanahan, T. R. (2001). Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing. Journal of Experimental Marine Biology and Ecology 262, 133–153.
Echinoid bioerosion and herbivory on Kenyan coral reefs: the role of protection from fishing.Crossref | GoogleScholarGoogle Scholar | 11445084PubMed |

Cernohorsky, N. H., McClanahan, T. R., Babu, I., and Horsák, M. (2015). Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean. Coral Reefs 34, 1023–1035.
Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Chabanet, P., Ralambondrainy, H., Amanieu, M., Faure, G., and Galzin, R. (1997). Relationships between coral reef substrata and fish. Coral Reefs 16, 93–102.
Relationships between coral reef substrata and fish.Crossref | GoogleScholarGoogle Scholar |

Clark, A. M. (1976). Echinoderms of coral reefs. Chapter 3. In ‘Biology and Geology of Coral Reefs,’ vol. 3. (Eds O. A. Jones and R. Endean.) pp. 95–123. (Academic Press: New York, NY, USA.)

Clemente, S., and Hernández, J. C. (2008). Influence of wave exposure and habitat complexity in determining spatial variation of the sea urchin Diadema aff. Antillarum (Echinoidae: Diadematidae) populations and macroalgal cover (Canary Islands – eastern Atlantic Ocean). Revista de Biología Tropical 56, 229–254.

Clemente, S., Hernández, J. C., Montaño-Moctezuma, G., Russell, M. P., and Ebert, T. A. (2013). Predators of juvenile sea urchins and the effect of habitat refuges. Marine Biology 160, 579–590.
Predators of juvenile sea urchins and the effect of habitat refuges.Crossref | GoogleScholarGoogle Scholar |

Collins, L. B., Twiggs, E. J., and Tecchiato, S. (2011). Ningaloo Marine Park – Characterisation of geomorphology and sedimentology. WAMSI 3.4.2 Final Report, Western Australian Marine Science Institution, Perth, WA, Australia.

Côté, I. M., Mosqueira, I., and Reynolds, J. D. (2001). Effects of marine reserve characteristics on the protection of fish populations: a meta-analysis. Journal of Fish Biology 59, 178–189.
Effects of marine reserve characteristics on the protection of fish populations: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Dart, J. K. G. (1972). Echinoids, algal lawn and coral recolonization. Nature 239, 50–51.
Echinoids, algal lawn and coral recolonization.Crossref | GoogleScholarGoogle Scholar |

Department of Biodiversity, Conservation and Attractions (2019). Ningaloo Coast World Heritage Area visitor guide. (DBCA.) Available at https://parks.dpaw.wa.gov.au/sites/default/files/downloads/parks/Ningaloo%20Coast%20World%20Heritage%20Area%20Visitor%20Guide_0.pdf [Verified 31 July 2020].

Department of Biodiversity, Conservation and Attractions (2020). Ningaloo Coast World Heritage Area map and sanctuary zones 2020. (DBCA.) Available at https://parks.dpaw.wa.gov.au/sites/default/files/downloads/parks/Ningaloo%20Coast%20World%20Heritage%20Area%20Visitor%20map%20and%20sanctuary%20zones_0.pdf [Verified 28 May 2021].

Department of Environment, Water, Heritage and the Arts (2008). The North-West Marine Bioregional Plan – Bioregional Profile. (DEWHA.) Available at https://parksaustralia.gov.au/marine/pub/scientific-publications/archive/north-west-bioregional-plan.pdf [Verified 31 July 2020].

Done, T. J., Dayton, P. K., Dayton, A. E., and Steger, R. (1991). Regional and local variability in recovery of shallow coral communities: Moorea, French Polynesia and central Great Barrier Reef. Coral Reefs 9, 183–192.
Regional and local variability in recovery of shallow coral communities: Moorea, French Polynesia and central Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Done, T. J., Ogden, J. C., Weibe, W. J., and Rosen, B. R. (1996). Biodiversity and ecosystem function of coral reefs. In ‘Functional Roles of Biodiversity: a Global Perspective’. (Eds H. A. Mooney, J. H. Cushman, E. Medina, O. E. Sala, and E-D. Schulze). pp. 393–429. (Wiley: Chichester, UK.)

Downing, N., and El Zahr, C. R. (1987). Gut evacuation and filling rates in the rock-boring sea urchin, Echinometra mathaei. Bulletin of Marine Science 41, 579–584.

Dudgeon, S. R., Aronson, R. B., Bruno, J. F., and Precht, W. F. (2010). Phase shifts and stable states on coral reefs. Marine Ecology Progress Series 413, 201–216.
Phase shifts and stable states on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Dumas, P., Kulbicki, M., Chifflet, S., Fichez, R., and Ferraris, J. (2007). Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). Journal of Experimental Marine Biology and Ecology 344, 88–100.
Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific).Crossref | GoogleScholarGoogle Scholar |

Ebert, T. A. (1982). Longevity, life history, and relative body wall size in sea urchins. Ecological Monographs 52, 353–394.
Longevity, life history, and relative body wall size in sea urchins.Crossref | GoogleScholarGoogle Scholar |

Edgar, G. J., Russ, G. R., and Babcock, R. C. (2007). Marine protected areas. In ‘Marine Ecology’. (Eds S. D. Connell and B. M. Gillanders.) pp. 533–564. (Oxford University Press: Melbourne, Vic., Australia.)

Edmunds, P. J., and Carpenter, R. C. (2001). Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proceedings of the National Academy of Sciences of the United States of America 98, 5067–5071.
Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef.Crossref | GoogleScholarGoogle Scholar | 11274358PubMed |

Edmundson, C. H. (1946). ‘Reef and Shore Fauna of Hawaii’, 2nd edn. (Bernice P. Bishop Museum: Honolulu, HI, USA.)

Fabricius, K. E., Logan, M., Weeks, S., and Brodie, J. (2014). The effects of river run-off on water clarity across the central Great Barrier Reef. Marine Pollution Bulletin 84, 191–200.
The effects of river run-off on water clarity across the central Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 24863415PubMed |

Feehan, C. J., and Scheibling, R. E. (2014). Effects of sea urchin disease on coastal marine ecosystems. Marine Biology 161, 1467–1485.
Effects of sea urchin disease on coastal marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Filbee-Dexter, K., and Scheibling, R. E. (2014). Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Marine Ecology Progress Series 495, 1–25.
Sea urchin barrens as alternative stable states of collapsed kelp ecosystems.Crossref | GoogleScholarGoogle Scholar |

Fisher, R., Wilson, S. K., Sin, T. M., Lee, A. C., and Langlois, T. J. (2018). A simple function for full-subsets multiple regression in ecology with R. Ecology and Evolution 8, 6104–6113.
A simple function for full-subsets multiple regression in ecology with R.Crossref | GoogleScholarGoogle Scholar | 29988441PubMed |

Fricke, H. W. (1971). Fische als feinde tropischer seeigel. Marine Biology 9, 328–338.
Fische als feinde tropischer seeigel.Crossref | GoogleScholarGoogle Scholar |

Gadgil, M., and Bossert, W. H. (1970). Life historical consequences of natural selection. American Naturalist 104, 1–24.
Life historical consequences of natural selection.Crossref | GoogleScholarGoogle Scholar |

García-Rubies, A., and Zabala, M. (1990). Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Scientia Marina 54, 317–328.

Gil Fernández, C., Paulo, D., Serrão, E. A., and Engelen, A. H. (2016). Limited differences in fish and benthic communities and possible cascading effects inside and outside a protected marine area in Sagres (SW Portugal). Marine Environmental Research 114, 12–23.
Limited differences in fish and benthic communities and possible cascading effects inside and outside a protected marine area in Sagres (SW Portugal).Crossref | GoogleScholarGoogle Scholar | 26741737PubMed |

Glynn, P. W., and Manzello, D. P. (2015). Bioerosion and coral reef growth: a dynamic balance. In ‘Coral Reefs in the Anthropocene’. (Ed. C. Birkeland.) pp. 67–97. (Springer: Dordrecht, Netherlands.)
| Crossref |

Glynn, P. W., Wellington, G. M., and Birkeland, C. (1979). Coral reef growth in the Galápagos: limitation by sea urchins. Science 203, 47–49.
Coral reef growth in the Galápagos: limitation by sea urchins.Crossref | GoogleScholarGoogle Scholar | 17840510PubMed |

Goatley, C. H. R., Bonaldo, R. M., Fox, R. J., and Bellwood, D. R. (2016). Sediments and herbivory as sensitive indicators of coral reef degradation. Ecology and Society 21, art29.
Sediments and herbivory as sensitive indicators of coral reef degradation.Crossref | GoogleScholarGoogle Scholar |

Graham, N. A. J., and Nash, K. L. (2013). The importance of structural complexity in coral reef systems. Coral Reefs 32, 315–326.
The importance of structural complexity in coral reef systems.Crossref | GoogleScholarGoogle Scholar |

Gray, C. M. (1990). Population densities of the sea urchin, Echinometra mathaei, in relation to defined habitat types in Diani Lagoon, Kenya. Technical Report. (Exeter University: Exeter, UK.) Available at https://aquadocs.org/handle/1834/8484

Harborne, A. R., Renaud, P. G., Tyler, E. H. M., and Mumby, P. J. (2009). Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes. Coral Reefs 28, 783–791.
Reduced density of the herbivorous urchin Diadema antillarum inside a Caribbean marine reserve linked to increased predation pressure by fishes.Crossref | GoogleScholarGoogle Scholar |

Harmelin, J. G., Bachet, F., and Garcia, F. (1995). Mediterranean marine reserves: fish indices as tests of protection efficiency. Marine Ecology (Berlin) 16, 233–250.
Mediterranean marine reserves: fish indices as tests of protection efficiency.Crossref | GoogleScholarGoogle Scholar |

Hay, M. E. (1984). Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical? Ecology 65, 446–454.
Patterns of fish and urchin grazing on Caribbean coral reefs: are previous results typical?Crossref | GoogleScholarGoogle Scholar |

Hereu, B., Zabala, M., Linares, C., and Sala, E. (2005). The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins. Marine Biology 146, 293–299.
The effects of predator abundance and habitat structural complexity on survival of juvenile sea urchins.Crossref | GoogleScholarGoogle Scholar |

Hernández, J. C., and Russell, M. P. (2010). Substratum cavities affect growth-plasticity, allometry, movement and feeding rates in the sea urchin Strongylocentrotus purpuratus. Journal of Experimental Marine Biology and Ecology 213, 520–525.
Substratum cavities affect growth-plasticity, allometry, movement and feeding rates in the sea urchin Strongylocentrotus purpuratus.Crossref | GoogleScholarGoogle Scholar |

Hoyt, E. (2018). Marine Protected Areas. In ‘Encyclopedia of Marine Mammals’, 3rd edn. (Eds B. Würsig, J. G. M. Thewissen, and K. M. Kovacs.) pp. 569–580. (Academic Press.)
| Crossref |

Hughes, T. P. (1994). Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551.
Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef.Crossref | GoogleScholarGoogle Scholar | 17801530PubMed |

Hughes, T. P., Reed, D. C., and Boyle, M.-J. (1987). Herbivory on coral reefs: community structure following mass mortalities of sea urchins. Journal of Experimental Marine Biology and Ecology 113, 39–59.
Herbivory on coral reefs: community structure following mass mortalities of sea urchins.Crossref | GoogleScholarGoogle Scholar |

Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415–427.
Concluding remarks.Crossref | GoogleScholarGoogle Scholar |

Johansson, C. L., Bellwood, D. R., and Depczynski, M. (2010). Sea urchins, macroalgae and coral reef decline: a functional evaluation of an intact reef system, Ningaloo, Western Australia. Marine Ecology Progress Series 414, 65–74.
Sea urchins, macroalgae and coral reef decline: a functional evaluation of an intact reef system, Ningaloo, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Johansson, C. L., Bellwood, D. R., Depczynski, M., and Hoey, A. S. (2013). The distribution of the sea urchin Echinometra mathaei (de Blainville) and its predators on Ningaloo Reef, Western Australia: the implication for top-down control in an intact reef system. Journal of Experimental Marine Biology and Ecology 442, 39–46.
The distribution of the sea urchin Echinometra mathaei (de Blainville) and its predators on Ningaloo Reef, Western Australia: the implication for top-down control in an intact reef system.Crossref | GoogleScholarGoogle Scholar |

Kelso, D. P. (1970). Comparative morphological and ecological study of two species of the sea urchin genus Echinometra in Hawaii. Ph.D. Thesis, University of Hawaii, HI, USA. Available at http://hdl.handle.net/10125/12001.

Khamala, C. P. M. (1971). Ecology of Echinometra mathaeii (Echinoidea: Echinodermata) at Diani Beach, Kenya. Marine Biology 11, 167–172.

Kirkman, H. (2013). Choosing boundaries to marine protected areas and zoning the MPAs for restricted use and management. Ocean and Coastal Management 81, 38–48.
Choosing boundaries to marine protected areas and zoning the MPAs for restricted use and management.Crossref | GoogleScholarGoogle Scholar |

Kobryn, T. H. (2018). Mapping marine and terrestrial habitat in Ningaloo Reef. (Ningaloo Collaboration Cluster.) Available at https://research.csiro.au/ningaloo/wp-content/uploads/sites/59/2018/09/20-Ningaloo_factsheet_Kobryn_marine-habitats_Final.pdf [Verified 31 July 2020].

Kobryn, H. T., Wouters, K., Beckley, L. E., and Heege, T. (2013). Ningaloo Reef: shallow marine habitats mapped using a hyperspectral sensor. PLoS One 8, e70105.
Ningaloo Reef: shallow marine habitats mapped using a hyperspectral sensor.Crossref | GoogleScholarGoogle Scholar | 23922921PubMed |

Labbé-Bellas, R., Cordeiro, C. A. M. M., Floeter, S. R., and Segal, B. (2016). Sea urchin abundance and habitat relationships in difference Brazilian reef types. Regional Studies in Marine Science 8, 33–40.
Sea urchin abundance and habitat relationships in difference Brazilian reef types.Crossref | GoogleScholarGoogle Scholar |

Langdon, M. W. (2012). The ecology of the grazing urchin Echinometra mathaei at Ningaloo Marine Park. Ph.D. thesis, Murdoch University, Perth, WA, Australia.

Langdon, M. W., van Keulen, M., and Paling, E. I. (2013). Distribution, abundance and bioerosion of the grazing sea urchin Echinometra mathaei at Ningaloo Marine Park, Western Australia. Journal of the Royal Society of Western Australia 96, 19.

Lawrence, J. M. (1975). On the relationships between marine plants and sea urchins. Oceanography and Marine Biology – an Annual Review 13, 213–286.

Lawrence, J. M. (2001). The edible sea-urchins. Developments in Aquaculture and Fisheries Science 32, 1–4.
The edible sea-urchins.Crossref | GoogleScholarGoogle Scholar |

Lawrence, J. M., and Sammarco, P. W. (1982). Effects of feeding on the environment: Echinoidea. In ‘Echinoderm Nutrition’. (Eds M. Jangoux and J. M. Lawrence.) pp. 499–519. (CRC Press: Rotterdam, Netherlands.)

Lee, S. C. (2006). Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef. Oikos 112, 442–447.
Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef.Crossref | GoogleScholarGoogle Scholar |

Lessios, H. A. (1988). Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annual Review of Ecology, Evolution, and Systematics 19, 371–393.
Mass mortality of Diadema antillarum in the Caribbean: what have we learned?Crossref | GoogleScholarGoogle Scholar |

Letourneur, Y. (1996). Réponses des peuplements et populations de poisons aux reserves marines: le cas de l’île de Mayotte, Océan Indien occidental. Ecoscience 3, 442–450.
Réponses des peuplements et populations de poisons aux reserves marines: le cas de l’île de Mayotte, Océan Indien occidental.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R. (1988). Coexistence in a sea urchin guild and its implications to coral reef diversity and degradation. Oecologia 77, 210–218.
Coexistence in a sea urchin guild and its implications to coral reef diversity and degradation.Crossref | GoogleScholarGoogle Scholar | 28310374PubMed |

McClanahan, T. R. (1992). Resource utilisation, competition, and predation: a model and example from coral reef grazers. Ecological Modelling 61, 195–215.
Resource utilisation, competition, and predation: a model and example from coral reef grazers.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R. (1995). Fish predators and scavengers of the sea urchin Echinometra mathaei in Kenyan coral-reef marine parks. Environmental Biology of Fishes 43, 187–193.
Fish predators and scavengers of the sea urchin Echinometra mathaei in Kenyan coral-reef marine parks.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R. (1998). Predation and the distribution and abundance of tropical sea urchin populations. Journal of Experimental Marine Biology and Ecology 221, 231–255.
Predation and the distribution and abundance of tropical sea urchin populations.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R., and Kurtis, J. D. (1991). Population regulation of the rock-boring sea urchin Echinometra mathaei (de Blainville). Journal of Experimental Marine Biology and Ecology 147, 121–146.
Population regulation of the rock-boring sea urchin Echinometra mathaei (de Blainville).Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R., and Muthiga, N. A. (1989). Patterns of predation of a sea urchin, Echinometra methaei (de Blainville), on Kenyan coral reefs. Journal of Experimental Marine Biology and Ecology 126, 77–94.
Patterns of predation of a sea urchin, Echinometra methaei (de Blainville), on Kenyan coral reefs.Crossref | GoogleScholarGoogle Scholar |

McClanahan, T. R., and Muthiga, N. A. (2001). The ecology of Echinometra. In ‘Edible Sea Urchins’. (Ed J. M. Lawrence). pp. 225–243. (Elsevier: Amsterdam, Netherlands.)

McClanahan, T. R., and Muthiga, N. A. (2013). Chapter 23: Echinometra. In ‘Developments in Aquaculture and Fisheries Science’, vol. 38. pp. 337–353. (Elsevier.)
| Crossref |

McClanahan, T. R., and Shafir, S. H. (1990). Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons. Oecologia 83, 362–370.
Causes and consequences of sea urchin abundance and diversity in Kenyan coral reef lagoons.Crossref | GoogleScholarGoogle Scholar | 28313008PubMed |

McClanahan, T. R., Muthiga, N. A., Kamukuru, A. T., Machano, H., and Kiambo, R. W. (1999). The effects of marine parks and fishing on coral reefs of northern Tanzania. Biological Conservation 89, 161–182.
The effects of marine parks and fishing on coral reefs of northern Tanzania.Crossref | GoogleScholarGoogle Scholar |

Muthiga, N. A. (1996). The role of early life history strategies on the population dynamics of the sea urchin Echinometra mathaei (de Blainville) on reefs in Kenya. Ph.D. Thesis, University of Nairobi, Mombasa, Kenya.

Neill, J. B. (1988). Experimental analysis of burrow defense in Echinometra mathaei (de Blainville) on Indo-West Pacific reef flat. Journal of Experimental Marine Biology and Ecology 115, 127–136.
Experimental analysis of burrow defense in Echinometra mathaei (de Blainville) on Indo-West Pacific reef flat.Crossref | GoogleScholarGoogle Scholar |

Ogden, J. C. (1976). Some aspects of herbivore-plant relationships on Caribbean reefs and seagrass beds. Aquatic Botany 2, 103–116.
Some aspects of herbivore-plant relationships on Caribbean reefs and seagrass beds.Crossref | GoogleScholarGoogle Scholar |

Ogden, N. B., Odgen, J. C., and Abbott, I. A. (1989). Distribution, abundance and food of sea urchins on a leeward Hawaiian reef. Bulletin of Marine Science 45, 539–549.

Ohgaki, S.-I., Kato, T., Kobayashi, N., Tanase, H., Kumagai, N. H., Ishida, S., Nakano, T., Wada, Y., and Yusa, Y. (2019). Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan. Ecological Indicators 96, 684–693.
Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan.Crossref | GoogleScholarGoogle Scholar |

Pearse, J., and Phillips, B. F. F. (1968). Continuous reproduction in the Indo-Pacific sea urchin Echinometra mathaei at Rottnest Island, Western Australia. Australian Journal of Marine and Freshwater Research 19, 161–172.
Continuous reproduction in the Indo-Pacific sea urchin Echinometra mathaei at Rottnest Island, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Perry, C. T., and Harborne, A. R. (2016). Bioerosion on modern reefs: impacts and responses under changing ecological and environmental conditions. In ‘Coral Reefs at the Crossroads. Coral Reefs of the World’, vol. 6. (Eds D. K. Hubbard, C. S. Rogers, J. H. Lipps, and G. D. Stanley Jr.) pp. 69–101. (Springer: Dordrecht, Netherlands.)
| Crossref |

Peyrot-Clausade, M., Chabanet, P., Conand, C., Fontaine, M. F., Letourneur, Y., and Harmelin-Vivien, M. (2000). Sea urchin and fish bioerosion on La Réunion and Moorea reefs. Bulletin of Marine Science 66, 477–485.

Prince, J. (1995). Limited effects of the sea urchin Echinometra mathaei (de Blainville) on the recruitment of benthic algae and macroinvertebrates into intertidal rock platforms at Rottnest Island, Western Australia. Journal of Experimental Marine Biology and Ecology 186, 237–258.
Limited effects of the sea urchin Echinometra mathaei (de Blainville) on the recruitment of benthic algae and macroinvertebrates into intertidal rock platforms at Rottnest Island, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Rakitin, A., and Kramer, D. L. (1996). Effect of a marine reserve on the distribution of coral reef fishes in Barbados. Marine Ecology Progress Series 131, 97–113.
Effect of a marine reserve on the distribution of coral reef fishes in Barbados.Crossref | GoogleScholarGoogle Scholar |

Risk, M. J. (1972). Fish diversity on a coral reef in the Virgin Islands. Atoll Research Bulletin 153, 1–4.
Fish diversity on a coral reef in the Virgin Islands.Crossref | GoogleScholarGoogle Scholar |

Roberts, C. M., and Ormond, R. F. G. (1987). Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series 41, 1–8.
Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs.Crossref | GoogleScholarGoogle Scholar |

Roberts, C. M., Hawkins, J. P., and Gell, F. R. (2005). The role of marine reserves in achieving sustainable fisheries. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 123–132.
The role of marine reserves in achieving sustainable fisheries.Crossref | GoogleScholarGoogle Scholar | 15713592PubMed |

Rogers, J. S., Monismith, S. G., Feddersen, F., and Storlazzi, C. D. (2013). Hydrodynamics of spur and groove formations on a coral reef. Journal of Geophysical Research – Oceans 118, 3059–3073.
Hydrodynamics of spur and groove formations on a coral reef.Crossref | GoogleScholarGoogle Scholar |

Russ, G. (1985). Effects of protective management on coral reef fishes in the central Philippines. In ‘Proceedings of the 5th International Coral Reef Congress’, 27 May–1 June 1985, Tahiti. (Eds C. Gabrie, and B. Salvat.) Vol. 4, pp. 219–224. (Museum National d’Histoire Naturelle and Ecole Pratique des Hautes Etudes: Tahiti, French Polynesia.)

Russ, G. R. (2002). Yet another review of marine reserves as reef fishery management tools. In ‘Coral Reef Fishes. Dynamics and Diversity in a Complex Ecosystem’. (Ed. P. F. Sale.) pp. 421–443. (Academic Press: San Diego, CA, USA.)
| Crossref |

Russo, A. R. (1977). Water flow and the distribution and abundance of echinoids (genus Echinometra) on a Hawaiian Reef. Marine and Freshwater Research 28, 693–702.
Water flow and the distribution and abundance of echinoids (genus Echinometra) on a Hawaiian Reef.Crossref | GoogleScholarGoogle Scholar |

Russo, A. R. (1980). Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands. Journal of Marine Research 38, 99–110.

Ryan, K. L., Hall, N. G., Lai, E. K., Smallwood, C. B., Taylor, S. M., and Wise, B. S. (2017). Statewide survey of boat-based recreational fishing in Western Australia 2015/16. Fisheries Research report number 287, Department of Primary Industries and Regional Development, Perth WA, Australia.

Sala, E., and Zabala, M. (1996). Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean. Marine Ecology Progress Series 140, 71–81.
Fish predation and the structure of the sea urchin Paracentrotus lividus populations in the NW Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Sala, E., Ribes, M., Hereu, B., Zabala, M., Alvà, V., Coma, R., and Garrabou, J. (1998). Temporal variability in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula in the northwestern Mediterranean: comparison between a marine reserve and an unprotected area. Marine Ecology Progress Series 168, 135–145.
Temporal variability in abundance of the sea urchins Paracentrotus lividus and Arbacia lixula in the northwestern Mediterranean: comparison between a marine reserve and an unprotected area.Crossref | GoogleScholarGoogle Scholar |

Sammarco, P. W. (1980). Diadema and its relationship to coral spat mortality: grazing, competition, and biological disturbance. Journal of Experimental Marine Biology and Ecology 45, 245–272.
Diadema and its relationship to coral spat mortality: grazing, competition, and biological disturbance.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Jérez, P., Cesar, A., Cortez, F. S., Pereira, C. D. S., and Silva, S. L. R. (2001). Spatial distribution of the most abundant sea urchin populations on the southeast coast of São Paulo (Brazil). Ciencias Marinas 27, 139–153.
Spatial distribution of the most abundant sea urchin populations on the southeast coast of São Paulo (Brazil).Crossref | GoogleScholarGoogle Scholar |

Sangil, C., and Guzman, H. M. (2016). Assessing the herbivore role of the sea urchin Echinometra viridis: keys to determine the structure of communities in disturbed coral reefs. Marine Environmental Research 120, 202–213.
Assessing the herbivore role of the sea urchin Echinometra viridis: keys to determine the structure of communities in disturbed coral reefs.Crossref | GoogleScholarGoogle Scholar | 27591516PubMed |

Scheffer, M., Carpenter, S., Foley, J. A., Folkes, C., and Walker, B. (2001). Catastrophic shifts in ecosystems. Nature 413, 591–596.
Catastrophic shifts in ecosystems.Crossref | GoogleScholarGoogle Scholar | 11595939PubMed |

Scoffin, T., Stearn, C., Boucher, D., Frydl, P., Hawkins, C., Hunter, I. W., and Macgeachy, J. (1980). Calcium carbonate budget of a fringing reef on the West Coast of Barbados. Bulletin of Marine Science 30, 475–508.

Sheppard-Brennand, H., Dworjanyn, S. A., and Poore, A. G. B. (2017). Global patterns in the effects of predator declines on sea urchins. Ecography 40, 1029–1039.
Global patterns in the effects of predator declines on sea urchins.Crossref | GoogleScholarGoogle Scholar |

Tebbett, S. B., Goatley, C. H. R., and Bellwood, D. R. (2017). Algal turf sediments and sediment production by parrotfishes across the continental shelf of the northern Great Barrier Reef. PLoS One 12, e0170854.
Algal turf sediments and sediment production by parrotfishes across the continental shelf of the northern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar | 28122042PubMed |

Traiger, S. B. (2019). Effects of elevated temperature and sedimentation on grazing rates of the green sea urchin: implications for kelp forests exposed to increased sedimentation with climate change. Helgoland Marine Research 73, 5.
Effects of elevated temperature and sedimentation on grazing rates of the green sea urchin: implications for kelp forests exposed to increased sedimentation with climate change.Crossref | GoogleScholarGoogle Scholar |

Tsuchiya, M., and Nishihira, M. (1984). Distribution of two types of the sea urchin Echinometra mathaei (Blainville) on Okinawan reef flat. Galaxea 3, 131–143.

United Nations Educational, Scientific and Cultural Organization (2011). Natural properties – Ningaloo Coast (Australia). Decision: 35 COM 8B.7. In ‘Decisions adopted by the World Heritage Committee at its 35th session’. WHC-11/35.COM/20, pp. 174–177. (UNESCO: Paris, France.)

Vanderklift, M. A., Lavery, P. S., and Waddington, K. I. (2009). Intensity of herbivory on kelp by fish and sea urchins differs between inshore and offshore reefs. Marine Ecology Progress Series 376, 203–211.
Intensity of herbivory on kelp by fish and sea urchins differs between inshore and offshore reefs.Crossref | GoogleScholarGoogle Scholar |

Walker, J. W. (2007). Effects of fine sediments on settlement and survival of the sea urchin Evechinus chloroticus in northeaster New Zealand. Marine Ecology Progress Series 331, 109–118.
Effects of fine sediments on settlement and survival of the sea urchin Evechinus chloroticus in northeaster New Zealand.Crossref | GoogleScholarGoogle Scholar |

Watts, R. J., Johnson, M. S., and Black, R. (1990). Effects of recruitment on genetic patchiness in the urchin Echinometra mathaei in Western Australia. Marine Biology 105, 145–151.
Effects of recruitment on genetic patchiness in the urchin Echinometra mathaei in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Webster, F. (2008). Coral reef resilience: balancing production and herbivory. Ph.D. Thesis, Murdoch University, Perth, WA, Australia.

Weil, E., Torres, J. L., and Ashton, M. (2005). Population characteristics of the sea urchin Diadema antillarum in La Parguera, Puerto Rico, 17 years after the mass mortality event. Revista de Biología Tropical 53, 219–231.
| 17471614PubMed |

Westera, M. (2003). The effect of recreational fishing on targeted fishes and trophic structure, in a coral reef marine park. Ph.D. Thesis, Edith Cowan University, Perth, WA, Australia. Available at https://ro.ecu.edu.au/theses/1499

Westera, M., Lavery, P., and Hyndes, G. (2003). Differences in recreationally targeted fishes between protected and fished areas of a coral reef marine park. Journal of Experimental Marine Biology and Ecology 294, 145–168.
Differences in recreationally targeted fishes between protected and fished areas of a coral reef marine park.Crossref | GoogleScholarGoogle Scholar |