Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Cave lithology influencing EPT (Ephemeroptera, Plecoptera, Trichoptera) assemblages and habitat structure in south-eastern Brazil

Gabrielle Soares Muniz Pacheco https://orcid.org/0000-0002-9054-0566 A C , Thais Giovannini Pellegrini https://orcid.org/0000-0001-6725-9429 A B and Rodrigo Lopes Ferreira https://orcid.org/0000-0003-3288-4405 A
+ Author Affiliations
- Author Affiliations

A Centro de Estudos em Biologia Subterrânea (CEBS), Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras (MG), CEP 37.200-900, Brazil.

B Departamento de Entomologia, Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil.

C Corresponding author. Email: gabrielle.pacheco@hotmail.com

Marine and Freshwater Research - https://doi.org/10.1071/MF20359
Submitted: 17 December 2020  Accepted: 12 May 2021   Published online: 18 June 2021

Abstract

Knowing how cave lithology influences the benthic macroinvertebrate fauna is important for conservation and management of subterranean aquatic systems. However, those influences are still poorly understood, especially in the Neotropics. This study aimed to understand how cave lithology can influence benthic EPT assemblages by assessing the differences in the EPT genera structure in caves of two distinct lithologies (quartzite and limestone) and determining possible differences in the lithology habitats. To achieve this, hydrochemistry data and biological samples were collected in six allogenic cave streams from the two aforementioned lithologies. Results showed that both the assemblages from different lithologies and within the same lithology are statistically different, thus indicating probable regional influences beyond local ones. Our results also pointed out an effect of lithology on the substrate parameters, which in turn affected the EPT composition. Cave lithology affects water chemical and physical characteristics, thus supporting different EPT assemblages. The results of this study provide a foundation for future investigation on how the lithology can influence the benthic macroinvertebrate fauna and should lead to means of predicting such fauna on the basis of the cave lithology and water chemistry.

Keywords: quartzite, limestone, bioindicators, EPT, aquatic environment.


References

Bakker, J. D. (2008). Increasing the utility of indicator species analysis. Journal of Applied Ecology 45, 1829–1835.
Increasing the utility of indicator species analysis.Crossref | GoogleScholarGoogle Scholar |

Barbour, M. T., Gerritsen, J., Snyder, B. D., and Stribling, J. B. (1999). ‘Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish’, 2nd edn. (US Environmental Protection Agency, Office of Water: Washington, DC, USA.)

Christman, M. C., and Culver, D. C. (2001). The relationship between cave biodiversity and available habitat. Journal of Biogeography 28, 367–380.
The relationship between cave biodiversity and available habitat.Crossref | GoogleScholarGoogle Scholar |

Da-Silva, E., Salles, F., and Baptista, M. (2002). As brânquias dos gêneros de Leptophlebiidae (Insecta: Ephemeroptera) ocorrentes no Estado do Rio de Janeiro. Biota Neotropica 2, 1–4.
As brânquias dos gêneros de Leptophlebiidae (Insecta: Ephemeroptera) ocorrentes no Estado do Rio de Janeiro.Crossref | GoogleScholarGoogle Scholar |

Death, R. G. (1989). The effect of a cave on benthic invertebrate communities in a South Island stream. New Zealand Natural Sciences 16, 67–78.

Flinn, M., Bowden, W., Peterson, B., Luecke, C., Balser, A., Allen, A., and Larouche, J. (2009). The influence of lithology on physical, chemical, and biological characteristics of headwater streams in the Feniak Lake Region, Noatak National Preserve, Alaska. Final report to the National Park Service.

Ford, D., and Williams, P. D. (2007). ‘Karst Hydrogeology and Geomorphology.’ (Wiley.)

Gibert, J., and Deharveng, L. (2002). Subterranean Ecosystems: a Truncated Functional Biodiversity. Bioscience 52, 473–481.
Subterranean Ecosystems: a Truncated Functional Biodiversity.Crossref | GoogleScholarGoogle Scholar |

Gillieson, D. (1996). ‘Caves. Processes, Development and Management.’ (Blackwell Publishers: Malden, MA, USA.)

Gupta, T., and Paul, M. (2013). The seasonal variation in ionic composition of pond water of Lumding, Assam, India. Current World Environment 8, 127–131.
The seasonal variation in ionic composition of pond water of Lumding, Assam, India.Crossref | GoogleScholarGoogle Scholar |

Hamada, N., Nessimian, J. L., and Querino, R. B. (2014). ‘Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia.’ (Editora do INPA: Manaus, Brazil.)

Holloway, J. M., Dahlgren, R. A., Hansen, B., and Casey, W. H. (1998). Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature 395, 785–788.
Contribution of bedrock nitrogen to high nitrate concentrations in stream water.Crossref | GoogleScholarGoogle Scholar |

Hughes, R. M., and Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27, 837–859.
Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality.Crossref | GoogleScholarGoogle Scholar |

Mammola, S. (2019). Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351.
Finding answers in the dark: caves as models in ecology fifty years after Poulson and White.Crossref | GoogleScholarGoogle Scholar |

McNie, P. M., and Death, R. G. (2017). The effect of agriculture on cave-stream invertebrate communities. Marine and Freshwater Research 68, 1999–2007.
The effect of agriculture on cave-stream invertebrate communities.Crossref | GoogleScholarGoogle Scholar |

Meißner, T., Sures, B., and Feld, C. K. (2019). Multiple stressors and the role of hydrology on benthic invertebrates in mountainous streams. The Science of the Total Environment 663, 841–851.
Multiple stressors and the role of hydrology on benthic invertebrates in mountainous streams.Crossref | GoogleScholarGoogle Scholar | 30738264PubMed |

Merritt, R. W., Cummins, K. W., and Berg, M. B. (2008). An Introduction to the Aquatic Insects of North America’, 4th edn. (Kendall Hunt Publishing: Dubuque, IO, USA.)

Mormul, R. P., Thomaz, S. M., Takeda, A. M., and Behrend, R. D. (2011). Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica 43, 738–745.
Structural complexity and distance from source habitat determine invertebrate abundance and diversity.Crossref | GoogleScholarGoogle Scholar |

Mugnai, R., Nessimian, J. L., and Baptista, D. F. (2010). ‘Manual De Identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro. 1.’ (Technical Books.)

Olifiers, M. H., Dorvillé, L. F., Nessimian, J. J., and Hamada, N. (2004). A key to Brazilian genera of Plecoptera (Insecta) based on nymphs. Zootaxa 651, 1–15.
A key to Brazilian genera of Plecoptera (Insecta) based on nymphs.Crossref | GoogleScholarGoogle Scholar |

Olson, J. R. (2012). The influence of geology and other environmental factors on stream water chemistry and benthic invertebrate assemblages. Ph.D. Thesis, Paper 1327. (Utah State University, UT, USA.) Available at https://digitalcommons.usu.edu/etd/1327/

Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., Lazorchak, J. M., McCormick, F. H., Peterson, S. A., Ringold, P. L., Magee, T., and Cappaert, M. (2006). Environmental monitoring and assessment program – surface waters western pilot study: field operations manual for wadeable streams. EPA/620/R-06/003, US Environmental Protection Agency, Office of Research and Development, Washington, DC, USA.

Pellegrini, T. G., Pompeu, P. S., and Ferreira, R. L. (2018). Cave benthic invertebrates in south-eastern Brazil: are there ‘key’ factors structuring such communities? Marine and Freshwater Research 69, 1762–1770.
Cave benthic invertebrates in south-eastern Brazil: are there ‘key’ factors structuring such communities?Crossref | GoogleScholarGoogle Scholar |

Resh, V. H., and Jackson, J. K. (1993). Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In ‘Freshwater Biomonitoring and Benthic Macroinvertebrates’. (Eds D. M. Rosenberg and V. H. Resh.) pp. 195–223. (Chapman and Hall: New York, NY, USA)

Rubbioli, E., Auler, A., Menin, D., and Brandi, R. (2019). ‘Cavernas – Atlas do Brasil subterrâneo.’ (ICMBiol.: Brasília, Brazil.)

Salles, F. F., Da-Silva, E. R., Serrão, J. E., and Francischetti, C. N. (2004). Baetidae (Ephemeroptera) na região sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal. Neotropical Entomology 33, 725–735.
Baetidae (Ephemeroptera) na região sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal.Crossref | GoogleScholarGoogle Scholar |

Souza-Silva, M., Martins, R. P., and Ferreira, R. L. (2011). Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest. Biodiversity and Conservation 20, 1713–1729.
Cave lithology determining the structure of the invertebrate communities in the Brazilian Atlantic Rain Forest.Crossref | GoogleScholarGoogle Scholar |

Souza-Silva, M., Iniesta, L. F. M., and Ferreira, R. L. (2020). Cave lithology effect on subterranean biodiversity: a case study in quartzite and granitoid caves. Acta Oecologica 108, 103645.
Cave lithology effect on subterranean biodiversity: a case study in quartzite and granitoid caves.Crossref | GoogleScholarGoogle Scholar |

Spalding, R. F., and Exner, M. E. (1993). Occurrence of nitrate in groundwater: a review. Journal of Environmental Quality 22, 392–402.
Occurrence of nitrate in groundwater: a review.Crossref | GoogleScholarGoogle Scholar |

Taylor, E. L. S., and Ferreira, R. L. (2012). Determinants on the structure of an aquatic invertebrate community in a Neotropical limestone cave. Revista Brasileira de Espeleologia 1, 1–12.