Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Comparison of an extracellular v. total DNA extraction approach for environmental DNA-based monitoring of sediment biota

Johan Pansu https://orcid.org/0000-0003-0256-0258 A B C D , Michelle B. Chapman C , Grant C. Hose https://orcid.org/0000-0003-2106-5543 C and Anthony A. Chariton https://orcid.org/0000-0002-5809-3372 C
+ Author Affiliations
- Author Affiliations

A Station Biologique de Roscoff, UMR 7144, CNRS, Sorbonne Université, Place Georges Teissier, F-29680 Roscoff, France.

B CSIRO Oceans & Atmosphere, New Illawarra Road, Lucas Heights, NSW 2234, Australia.

C Department of Biological Sciences, Macquarie University, Balaclava Road, Macquarie Park, NSW 2109, Australia.

D Corresponding author. Present address: Institut des Sciences de l’Évolution de Montpellier (ISEM, UMR 5554), IPHE, IRD, Université de Montpellier, Place Eugène Bataillon, F-34000 Montpellier, France. Email: johan.pansu@gmail.com

Marine and Freshwater Research - https://doi.org/10.1071/MF20269
Submitted: 2 September 2020  Accepted: 1 December 2020   Published online: 23 February 2021

Journal Compilation © CSIRO 2021 Open Access CC BY

Abstract

Monitoring sediment biota is an essential step for the quality assessment of aquatic ecosystems. Environmental DNA-based approaches for biomonitoring are increasing in popularity; yet, commercial kits and protocols for extracting total DNA from sediments remain expensive and time-consuming. Furthermore, they can accommodate only small amounts of sediments, potentially preventing an adequate representation of local biodiversity, especially for macro-organisms. Here, we assessed the reliability of a cost- and time-effective extracellular DNA extraction approach able to account for large volumes of starting material, for characterising bacterial, eukaryote and metazoan communities in three sedimentary environments. DNA concentrations extracted with the extracellular approach were at least similar to those obtained with the commercial kit. Local diversity estimates were not biased towards any particular extraction method, although specific responses were observed depending of the sediment type. Community composition and β-diversity patterns were moderately affected by the extraction approach and the initial amount of starting material; differences being more important for macro- than microorganisms. Thus, the extracellular DNA approach appears as robust and efficient as those based on the commercially available kit for biomonitoring sedimentary communities. Its low cost and fast processing time make it a promising alternative for large-scale ecological assessments of aquatic environments.

Keywords: benthic communities, biomonitoring, ecological assessment, eDNA protocols, metabarcoding, sample size.


References

Alawi, M., Schneider, B., and Kallmeyer, J. (2014). A procedure for separate recovery of extra- and intracellular DNA from a single marine sediment sample. Journal of Microbiological Methods 104, 36–42.
A procedure for separate recovery of extra- and intracellular DNA from a single marine sediment sample.Crossref | GoogleScholarGoogle Scholar | 24955890PubMed |

Alberdi, A., Aizpurua, O., Gilbert, M. T. P., and Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9, 134–147.
Scrutinizing key steps for reliable metabarcoding of environmental samples.Crossref | GoogleScholarGoogle Scholar |

Alkhatib, M., Lehmann, M. F., and del Giorgio, P. A. (2012). The nitrogen isotope effect of benthic remineralization–nitrification–denitrification coupling in an estuarine environment. Biogeosciences 9, 1633–1646.
The nitrogen isotope effect of benthic remineralization–nitrification–denitrification coupling in an estuarine environment.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J. (2001). A new method for non‐parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
A new method for non‐parametric multivariate analysis of variance.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253.
Distance-based tests for homogeneity of multivariate dispersions.Crossref | GoogleScholarGoogle Scholar | 16542252PubMed |

Apprill, A., McNally, S., Parsons, R., and Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology 75, 129–137.
Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton.Crossref | GoogleScholarGoogle Scholar |

Binladen, J., Gilbert, M. T. P., Bollback, J. P., Panitz, F., Bendixen, C., Nielsen, R., and Willerslev, E. (2007). The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2, e197.
The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing.Crossref | GoogleScholarGoogle Scholar | 17299583PubMed |

Birer, C., Tysklind, N., Zinger, L., and Duplais, C. (2017). Comparative analysis of DNA extraction methods to study the body surface microbiota of insects: a case study with ant cuticular bacteria. Molecular Ecology Resources 17, e34–e45.
Comparative analysis of DNA extraction methods to study the body surface microbiota of insects: a case study with ant cuticular bacteria.Crossref | GoogleScholarGoogle Scholar | 28477337PubMed |

Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Yu, D. W., and de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 29, 358–367.
Environmental DNA for wildlife biology and biodiversity monitoring.Crossref | GoogleScholarGoogle Scholar |

Borcard, D., Gillet, F., and Legendre, P. (2011). ‘Numerical Ecology with R’, 1st edn. (Springer: New York, NY, USA.)10.1007/978-1-4419-7976-6

Canfield, T. J., Kemble, N. E., Brumbaugh, W. G., Dwyer, F. J., Ingersoll, C. G., and Fairchild, J. F. (1994). Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork river, Montana. Environmental Toxicology and Chemistry 13, 1999–2012.
Use of benthic invertebrate community structure and the sediment quality triad to evaluate metal-contaminated sediment in the upper Clark Fork river, Montana.Crossref | GoogleScholarGoogle Scholar |

Canfield, T. J., James Dwyer, F., Fairchild, J. F., Haverland, P. S., Ingersoll, C. G., Kemble, N. E., Mount, D. R., La Point, T. W., Allen Burton, G., and Swift, M. C. (1996). Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach. Journal of Great Lakes Research 22, 565–583.
Assessing contamination in Great Lakes sediments using benthic invertebrate communities and the sediment quality triad approach.Crossref | GoogleScholarGoogle Scholar |

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., and Turnbaugh, P. J. Fierer, Nand Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America 108, 4516–452210.1073/PNAS.1000080107

Carere, M., Dulio, V., Hanke, G., and Polesello, S. (2012). Guidance for sediment and biota monitoring under the Common Implementation Strategy for the Water Framework Directive. Trends in Analytical Chemistry 36, 15–24.
Guidance for sediment and biota monitoring under the Common Implementation Strategy for the Water Framework Directive.Crossref | GoogleScholarGoogle Scholar |

Carini, P., Marsden, P. J., Leff, J. W., Morgan, E. E., Strickland, M. S., and Fierer, N. (2017). Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology 2, 16242.
Relic DNA is abundant in soil and obscures estimates of soil microbial diversity.Crossref | GoogleScholarGoogle Scholar |

Carlsen, T., Aas, A. B., Lindner, D., Vrålstad, T., Schumacher, T., and Kauserud, H. (2012). Don’t make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecology 5, 747–749.
Don’t make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies?Crossref | GoogleScholarGoogle Scholar |

Cattaneo, A., Couillard, Y., Wunsam, S., and Fortin, C. (2011). Littoral diatoms as indicators of recent water and sediment contamination by metals in lakes. Journal of Environmental Monitoring 13, 572–582.
Littoral diatoms as indicators of recent water and sediment contamination by metals in lakes.Crossref | GoogleScholarGoogle Scholar | 21184001PubMed |

Ceccherini, M. T., Ascher, J., Agnelli, A., Borgogni, F., Pantani, O. L., and Pietramellara, G. (2009). Experimental discrimination and molecular characterization of the extracellular soil DNA fraction. Antonie van Leeuwenhoek 96, 653–657.
Experimental discrimination and molecular characterization of the extracellular soil DNA fraction.Crossref | GoogleScholarGoogle Scholar | 19533410PubMed |

Chariton, A. A., Court, L. N., Hartley, D. M., Colloff, M. J., and Hardy, C. M. (2010). Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Frontiers in Ecology and the Environment 8, 233–238.
Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA.Crossref | GoogleScholarGoogle Scholar |

Chariton, A. A., Ho, K. T., Proestou, D., Bik, H., Simpson, S. L., Portis, L. M., Cantwell, M. G., Baguley, J. G., Burgess, R. M., Pelletier, M. M., Perron, M., Gunsch, C., and Matthews, R. A. (2014). A molecular-based approach for examining responses of eukaryotes in microcosms to contaminant-spiked estuarine sediments: DNA comparison of assemblages exposed to spiked sediments. Environmental Toxicology and Chemistry 33, 359–369.
A molecular-based approach for examining responses of eukaryotes in microcosms to contaminant-spiked estuarine sediments: DNA comparison of assemblages exposed to spiked sediments.Crossref | GoogleScholarGoogle Scholar | 24399368PubMed |

Chariton, A. A., Stephenson, S., Morgan, M. J., Steven, A. D. L., Colloff, M. J., Court, L. N., and Hardy, C. M. (2015). Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environmental Pollution 203, 165–174.
Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries.Crossref | GoogleScholarGoogle Scholar | 25909325PubMed |

Chariton, A. A., Pettigrove, V. J., and Baird, D. J. (2016). Ecological assessment. Chapter 7. In ‘Sediment Quality Assessment: a Practical Guide’. (Eds S. L. Simpson and G. E. Batley.) pp. 195–236. (CSIRO Publishing: Melbourne, Vic., Australia.) Available at http://hdl.handle.net/102.100.100/91025?index=1 [Verified 8 January 2021].

Clarke, L. J., Soubrier, J., Weyrich, L. S., and Cooper, A. (2014). Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Molecular Ecology Resources 14, 1160–1170.
Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias.Crossref | GoogleScholarGoogle Scholar | 24751203PubMed |

Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M., and Tiedje, J. M. (2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research 35, D169–D172.
The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data.Crossref | GoogleScholarGoogle Scholar | 17090583PubMed |

Cordier, T., Alonso‐Sáez, L., Apothéloz‐Perret‐Gentil, L., Aylagas, E., Bohan, D. A., Bouchez, A., Chariton, A., Creer, S., Frühe, L., Keck, F., Keeley, N., Laroche, O., Leese, F., Pochon, X., Stoeck, T., Pawlowski, J., and Lanzén, A. (2020). Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap. Molecular Ecology , mec.15472.
Ecosystems monitoring powered by environmental genomics: a review of current strategies with an implementation roadmap.Crossref | GoogleScholarGoogle Scholar | 33070453PubMed |

Dauer, D. M., Weisberg, S. B., and Ranasinghe, J. A. (2000). Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay. Estuaries 23, 80.
Relationships between benthic community condition, water quality, sediment quality, nutrient loads, and land use patterns in Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar |

Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F., and Taberlet, P. (2014). DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10, 20140562.
DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match.Crossref | GoogleScholarGoogle Scholar | 25209199PubMed |

Deagle, B. E., Clarke, L. J., Kitchener, J. A., Polanowski, A. M., and Davidson, A. T. (2018). Genetic monitoring of open ocean biodiversity: an evaluation of DNA metabarcoding for processing continuous plankton recorder samples. Molecular Ecology Resources 18, 391–406.
Genetic monitoring of open ocean biodiversity: an evaluation of DNA metabarcoding for processing continuous plankton recorder samples.Crossref | GoogleScholarGoogle Scholar | 29171158PubMed |

Deiner, K., and Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a natural river. PLoS One 9, e88786.
Transport distance of invertebrate environmental DNA in a natural river.Crossref | GoogleScholarGoogle Scholar | 24523940PubMed |

Dell’Anno, A., and Danovaro, R. (2005). Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309, 2179.
Extracellular DNA plays a key role in deep-sea ecosystem functioning.Crossref | GoogleScholarGoogle Scholar | 16195451PubMed |

Desianti, N., Potapova, M., Enache, M., Belton, T. J., Velinsky, D. J., Thomas, R., and Mead, J. (2017). Sediment diatoms as environmental indicators in New Jersey coastal lagoons. Journal of Coastal Research 78, 127–140.
Sediment diatoms as environmental indicators in New Jersey coastal lagoons.Crossref | GoogleScholarGoogle Scholar |

DiBattista, J. D., Reimer, J. D., Stat, M., Masucci, G. D., Biondi, P., De Brauwer, M., Wilkinson, S. P., Chariton, A. A., and Bunce, M. (2020). Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Scientific Reports 10, 8365.
Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 32433472PubMed |

Djurhuus, A., Port, J., Closek, C. J., Yamahara, K. M., Romero-Maraccini, O., Walz, K. R., Goldsmith, D. B., Michisaki, R., Breitbart, M., Boehm, A. B., and Chavez, F. P. (2017). Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels. Frontiers in Marine Science 4, 314.
Evaluation of filtration and DNA extraction methods for environmental DNA biodiversity assessments across multiple trophic levels.Crossref | GoogleScholarGoogle Scholar |

Dopheide, A., Xie, D., Buckley, T. R., Drummond, A. J., and Newcomb, R. D. (2019). Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods in Ecology and Evolution 10, 120–133.
Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.
Search and clustering orders of magnitude faster than BLAST.Crossref | GoogleScholarGoogle Scholar | 20709691PubMed |

Freckman, D. W., Blackburn, T. H., Brussaard, L., Hutchings, P., Palmer, M. A., and Snelgrove, P. V. R. (1997). Linking biodiversity and ecosystem functioning of soils and sediments. Ambio 26, 556–562.

Graham, S. E., Chariton, A. A., and Landis, W. G. (2019). Using Bayesian networks to predict risk to estuary water quality and patterns of benthic environmental DNA in Queensland. Integrated Environmental Assessment and Management 15, 93–111.
Using Bayesian networks to predict risk to estuary water quality and patterns of benthic environmental DNA in Queensland.Crossref | GoogleScholarGoogle Scholar | 30117283PubMed |

Gray, J. S. (1974). Animal–sediment relationships. Oceanography and Marine Biology – an Annual Review 12, 223–261.

Guardiola, M., Uriz, M. J., Taberlet, P., Coissac, E., Wangensteen, O. S., and Turon, X. (2016a). Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons. PLoS One 10, e0139633.
Deep-sea, deep-sequencing: metabarcoding extracellular DNA from sediments of marine canyons.Crossref | GoogleScholarGoogle Scholar |

Guardiola, M., Wangensteen, O. S., Taberlet, P., Coissac, E., Uriz, M. J., and Turon, X. (2016b). Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 4, e2807.
Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA.Crossref | GoogleScholarGoogle Scholar | 28028473PubMed |

Gyedu-Ababio, T. K., and Baird, D. (2006). Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicology and Environmental Safety 63, 443–450.
Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment.Crossref | GoogleScholarGoogle Scholar | 16406597PubMed |

Hardy, C. M., Krull, E. S., Hartley, D. M., and Oliver, R. L. (2010). Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Molecular Ecology 19, 197–212.
Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool.Crossref | GoogleScholarGoogle Scholar | 19912537PubMed |

Harris, J. K., Sahl, J. W., Castoe, T. A., Wagner, B. D., Pollock, D. D., and Spear, J. R. (2010). Comparison of normalization methods for construction of large, multiplex amplicon pools for next-generation sequencing. Applied and Environmental Microbiology 76, 3863–3868.
Comparison of normalization methods for construction of large, multiplex amplicon pools for next-generation sequencing.Crossref | GoogleScholarGoogle Scholar | 20418443PubMed |

Heilpern, S. A., Weeks, B. C., and Naeem, S. (2018). Predicting ecosystem vulnerability to biodiversity loss from community composition. Ecology 99, 1099–1107.
Predicting ecosystem vulnerability to biodiversity loss from community composition.Crossref | GoogleScholarGoogle Scholar | 29569236PubMed |

Hering, D., Borja, A., Jones, J. I., Pont, D., Boets, P., Bouchez, A., Bruce, K., Drakare, S., Hänfling, B., Kahlert, M., Leese, F., Meissner, K., Mergen, P., Reyjol, Y., Segurado, P., Vogler, A., and Kelly, M. (2018). Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Research 138, 192–205.
Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive.Crossref | GoogleScholarGoogle Scholar | 29602086PubMed |

Huettel, M., Berg, P., and Kostka, J. E. (2014). Benthic exchange and biogeochemical cycling in permeable sediments. Annual Review of Marine Science 6, 23–51.
Benthic exchange and biogeochemical cycling in permeable sediments.Crossref | GoogleScholarGoogle Scholar | 23987916PubMed |

Kennedy, A. D., and Jacoby, C. A. (1999). Biological indicators of marine environmental health: meiofauna – a neglected benthic component? Environmental Monitoring and Assessment 54, 47–68.
Biological indicators of marine environmental health: meiofauna – a neglected benthic component?Crossref | GoogleScholarGoogle Scholar |

Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez, V., Boehm, J. T., and Machida, R. J. (2013). A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10, 34.
A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents.Crossref | GoogleScholarGoogle Scholar | 23767809PubMed |

Leray, M., Haenel, Q., and Bourlat, S. J. (2016). Preparation of amplicon libraries for metabarcoding of marine eukaryotes using Illumina MiSeq: the adapter ligation method. In ‘Marine Genomics’. (Ed. S. J. Bourlat.) pp. 209–218. (Humana Press: New York, NY, USA.)10.1007/978-1-4939-3774-5_14

Lim, M. Y., Song, E. J., Kim, S. H., Lee, J., and Nam, Y. D. (2018). Comparison of DNA extraction methods for human gut microbial community profiling. Systematic and Applied Microbiology 41, 151–157.
Comparison of DNA extraction methods for human gut microbial community profiling.Crossref | GoogleScholarGoogle Scholar | 29305057PubMed |

Lyons, B. P., Thain, J. E., Stentiford, G. D., Hylland, K., Davies, I. M., and Vethaak, A. D. (2010). Using biological effects tools to define good environmental status under the European Union Marine Strategy Framework Directive. Marine Pollution Bulletin 60, 1647–1651.
Using biological effects tools to define good environmental status under the European Union Marine Strategy Framework Directive.Crossref | GoogleScholarGoogle Scholar | 20609451PubMed |

Majaneva, M., Diserud, O. H., Eagle, S. H. C., Boström, E., Hajibabaei, M., and Ekrem, T. (2018). Environmental DNA filtration techniques affect recovered biodiversity. Scientific Reports 8, 4682.
Environmental DNA filtration techniques affect recovered biodiversity.Crossref | GoogleScholarGoogle Scholar | 29549344PubMed |

McLachlan, A. (1996). Physical factors in benthic ecology: effects of changing sand particle size on beach fauna. Marine Ecology Progress Series 131, 205–217.
Physical factors in benthic ecology: effects of changing sand particle size on beach fauna.Crossref | GoogleScholarGoogle Scholar |

Nagler, M., Insam, H., Pietramellara, G., and Ascher-Jenull, J. (2018). Extracellular DNA in natural environments: features, relevance and applications. Applied Microbiology and Biotechnology 102, 6343–6356.
Extracellular DNA in natural environments: features, relevance and applications.Crossref | GoogleScholarGoogle Scholar | 29858957PubMed |

Natarajan, V. P., Zhang, X., Morono, Y., Inagaki, F., and Wang, F. (2016). A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments. Frontiers in Microbiology 7, 986.
A modified SDS-based DNA extraction method for high quality environmental DNA from seafloor environments.Crossref | GoogleScholarGoogle Scholar | 27446026PubMed |

Nielsen, K. M., Johnsen, P. J., Bensasson, D., and Daffonchio, D. (2007). Release and persistence of extracellular DNA in the environment. Environmental Biosafety Research 6, 37–53.
Release and persistence of extracellular DNA in the environment.Crossref | GoogleScholarGoogle Scholar | 17961479PubMed |

Ogram, A., Sayler, G. S., and Barkay, T. (1987). The extraction and purification of microbial DNA from sediments. Journal of Microbiological Methods 7, 57–66.
The extraction and purification of microbial DNA from sediments.Crossref | GoogleScholarGoogle Scholar |

Pansu, J., Giguet-Covex, C., Ficetola, G. F., Gielly, L., Boyer, F., Zinger, L., Arnaud, F., Poulenard, J., Taberlet, P., and Choler, P. (2015a). Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA. Molecular Ecology 24, 1485–1498.
Reconstructing long-term human impacts on plant communities: an ecological approach based on lake sediment DNA.Crossref | GoogleScholarGoogle Scholar | 25735209PubMed |

Pansu, J., De Danieli, S., Puissant, J., Gonzalez, J.-M., Gielly, L., Cordonnier, T., Zinger, L., Brun, J.-J., Choler, P., Taberlet, P., and Cécillon, L. (2015b). Landscape-scale distribution patterns of earthworms inferred from soil DNA. Soil Biology & Biochemistry 83, 100–105.
Landscape-scale distribution patterns of earthworms inferred from soil DNA.Crossref | GoogleScholarGoogle Scholar |

Pansu, J., Guyton, J. A., Potter, A. B., Atkins, J. L., Daskin, J. H., Wursten, B., Kartzinel, T. R., and Pringle, R. M. (2019). Trophic ecology of large herbivores in a reassembling African ecosystem. Journal of Ecology 107, 1355–1376.
Trophic ecology of large herbivores in a reassembling African ecosystem.Crossref | GoogleScholarGoogle Scholar |

Parada, A. E., Needham, D. M., and Fuhrman, J. A. (2016). Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: primers for marine microbiome studies. Environmental Microbiology 18, 1403–1414.
Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: primers for marine microbiome studies.Crossref | GoogleScholarGoogle Scholar | 26271760PubMed |

Pauvert, C., Buée, M., Laval, V., Edel-Hermann, V., Fauchery, L., Gautier, A., Lesur, I., Vallance, J., and Vacher, C. (2019). Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecology 41, 23–33.
Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline.Crossref | GoogleScholarGoogle Scholar |

Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero, A., Borja, A., Bouchez, A., Cordier, T., Domaizon, I., Feio, M. J., Filipe, A. F., Fornaroli, R., Graf, W., Herder, J., van der Hoorn, B., Iwan Jones, J., Sagova-Mareckova, M., Moritz, C., Barquín, J., Piggott, J. J., Pinna, M., Rimet, F., Rinkevich, B., Sousa-Santos, C., Specchia, V., Trobajo, R., Vasselon, V., Vitecek, S., Zimmerman, J., Weigand, A., Leese, F., and Kahlert, M. (2018). The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. The Science of the Total Environment 637–638, 1295–1310.
The future of biotic indices in the ecogenomic era: integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar | 29801222PubMed |

Pawlowski, J., Apothéloz‐Perret‐Gentil, L., and Altermatt, F. (2020). Environmental DNA: what’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology 29, 4258–4264.
Environmental DNA: what’s behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring.Crossref | GoogleScholarGoogle Scholar | 32966665PubMed |

Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., and Nannipieri, P. (2009). Extracellular DNA in soil and sediment: fate and ecological relevance. Biology and Fertility of Soils 45, 219–235.
Extracellular DNA in soil and sediment: fate and ecological relevance.Crossref | GoogleScholarGoogle Scholar |

Pochon, X., Wood, S. A., Keeley, N. B., Lejzerowicz, F., Esling, P., Drew, J., and Pawlowski, J. (2015). Accurate assessment of the impact of salmon farming on benthic sediment enrichment using foraminiferal metabarcoding. Marine Pollution Bulletin 100, 370–382.
Accurate assessment of the impact of salmon farming on benthic sediment enrichment using foraminiferal metabarcoding.Crossref | GoogleScholarGoogle Scholar | 26337228PubMed |

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590–D596.
The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Crossref | GoogleScholarGoogle Scholar | 23193283PubMed |

Ramírez, G. A., Graham, D., and D’Hondt, S. (2018a). Influence of commercial DNA extraction kit choice on prokaryotic community metrics in marine sediment. Limnology and Oceanography, Methods 16, 525–536.
Influence of commercial DNA extraction kit choice on prokaryotic community metrics in marine sediment.Crossref | GoogleScholarGoogle Scholar |

Ramírez, G. A., Jørgensen, S. L., Zhao, R., and D’Hondt, S. (2018b). Minimal influence of extracellular DNA on molecular surveys of marine sedimentary communities. Frontiers in Microbiology 9, 2969.
Minimal influence of extracellular DNA on molecular surveys of marine sedimentary communities.Crossref | GoogleScholarGoogle Scholar | 30564217PubMed |

Ranjard, L., Lejon, D. P. H., Mougel, C., Schehrer, L., Merdinoglu, D., and Chaussod, R. (2003). Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environmental Microbiology 5, 1111–1120.
Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities.Crossref | GoogleScholarGoogle Scholar | 14641591PubMed |

Schnell, I. B., Bohmann, K., and Gilbert, M. T. P. (2015). Tag jumps illuminated: reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources 15, 1289–1303.
Tag jumps illuminated: reducing sequence-to-sample misidentifications in metabarcoding studies.Crossref | GoogleScholarGoogle Scholar | 25740652PubMed |

Seiderer, L., and Newell, R. C. (1999). Analysis of the relationship between sediment composition and benthic community structure in coastal deposits: implications for marine aggregate dredging. ICES Journal of Marine Science 56, 757–765.
Analysis of the relationship between sediment composition and benthic community structure in coastal deposits: implications for marine aggregate dredging.Crossref | GoogleScholarGoogle Scholar |

Simčič, T. (2005). The role of plankton, zoobenthos, and sediment in organic matter degradation in oligotrophic and eutrophic mountain lakes. Hydrobiologia 532, 69–79.
The role of plankton, zoobenthos, and sediment in organic matter degradation in oligotrophic and eutrophic mountain lakes.Crossref | GoogleScholarGoogle Scholar |

Simpson, S. L., and Batley, G. E. (Eds) (2016). ‘Sediment Quality Assessment: a Practical Guide’, 2nd edn. (CSIRO Publishing: Melbourne, Vic., Australia.)

Simpson, S. L., Batley, G. E., and Chariton, A. A. (2013). Revision of the ANZECC/ARMCANZ sediment quality guidelines. (CSIRO.) Available at https://publications.csiro.au/publications/publication/PIlegacy:965 [Verified 8 January 2020].

Snelgrove, P. V. R. (1997). The importance of marine sediment biodiversity in ecosystem processes. Ambio 26, 578–583.

Snelgrove, P. V. R., and Butman, C. A. (1994). Animal–sediment relationships revisited: cause versus effect. Oceanography and Marine Biology – an Annual Review 32, 111–177.

Sutcliffe, B., Chariton, A. A., Harford, A. J., Hose, G. C., Greenfield, P., Elbourne, L. D. H., Oytam, Y., Stephenson, S., Midgley, D. J., and Paulsen, I. T. (2017). Effects of uranium concentration on microbial community structure and functional potential. Environmental Microbiology 19, 3323–3341.
Effects of uranium concentration on microbial community structure and functional potential.Crossref | GoogleScholarGoogle Scholar | 28631400PubMed |

Sutcliffe, B., Hose, G. C., Harford, A. J., Midgley, D. J., Greenfield, P., Paulsen, I. T., and Chariton, A. A. (2019). Microbial communities are sensitive indicators for freshwater sediment copper contamination. Environmental Pollution 247, 1028–1038.
Microbial communities are sensitive indicators for freshwater sediment copper contamination.Crossref | GoogleScholarGoogle Scholar | 30823331PubMed |

Taberlet, P., Coissac, E., Hajibabaei, M., and Rieseberg, L. H. (2012a). Environmental DNA. Molecular Ecology 21, 1789–1793.
Environmental DNA.Crossref | GoogleScholarGoogle Scholar | 22486819PubMed |

Taberlet, P., Prud’Homme, S. M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L., Rioux, D., Choler, P., Clément, J.-C., Melodelima, C., Pompanon, F., and Coissac, E. (2012b). Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies: extraction of extracellular DNA from soil. Molecular Ecology 21, 1816–1820.
Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies: extraction of extracellular DNA from soil.Crossref | GoogleScholarGoogle Scholar | 22300434PubMed |

Taberlet, P., Bonin, A., Zinger, L., and Coissac, E. (2018). ‘Environmental DNA: for Biodiversity Research and Monitoring.’ (Oxford University Press: Oxford, UK.)10.1093/OSO/9780198767220.001.0001

Thomsen, P. F., and Willerslev, E. (2015). Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation 183, 4–18.
Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity.Crossref | GoogleScholarGoogle Scholar |

Torti, A., Lever, M. A., and Jørgensen, B. B. (2015). Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Marine Genomics 24, 185–196.
Origin, dynamics, and implications of extracellular DNA pools in marine sediments.Crossref | GoogleScholarGoogle Scholar | 26452301PubMed |

Valentini, A., Miquel, C., Nawaz, M. A., Bellemain, E., Coissac, E., Pompanon, F., Gielly, L., Cruaud, C., Nascetti, G., Wincker, P., Swenson, J. E., and Taberlet, P. (2009). New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Molecular Ecology Resources 9, 51–60.
New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach.Crossref | GoogleScholarGoogle Scholar | 21564566PubMed |

Vuillemin, A., Horn, F., Alawi, M., Henny, C., Wagner, D., Crowe, S. A., and Kallmeyer, J. (2017). Preservation and significance of extracellular DNA in ferruginous sediments from Lake Towuti, Indonesia. Frontiers in Microbiology 8, 1440.
Preservation and significance of extracellular DNA in ferruginous sediments from Lake Towuti, Indonesia.Crossref | GoogleScholarGoogle Scholar | 28798742PubMed |

Wagner, A. O., Praeg, N., Reitschuler, C., and Illmer, P. (2015). Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil. Applied Soil Ecology 93, 56–64.
Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil.Crossref | GoogleScholarGoogle Scholar | 26339125PubMed |

Wang, Y., Sheng, H.-F., He, Y., Wu, J.-Y., Jiang, Y.-X., Tam, N. F.-Y., and Zhou, H.-W. (2012). Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Applied and Environmental Microbiology 78, 8264–8271.
Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags.Crossref | GoogleScholarGoogle Scholar | 23001654PubMed |

Yoccoz, N. G., Bråthen, K. A., Gielly, L., Haile, J., Edwards, M. E., Goslar, T., Von Stedingk, H., Brysting, A. K., Coissac, E., Pompanon, F., Sønstebø, J. H., Miquel, C., Valentini, A., De Bello, F., Chave, J., Thuiller, W., Wincker, P., Cruaud, C., Gavory, F., Rasmussen, M., Gilbert, M. T. P., Orlando, L., Brochmann, C., Willerslev, E., and Taberlet, P. (2012). DNA from soil mirrors plant taxonomic and growth form diversity: DNA from soils mirrors plant diversity. Molecular Ecology 21, 3647–3655.
DNA from soil mirrors plant taxonomic and growth form diversity: DNA from soils mirrors plant diversity.Crossref | GoogleScholarGoogle Scholar | 22507540PubMed |

Zinger, L., Chave, J., Coissac, E., Iribar, A., Louisanna, E., Manzi, S., Schilling, V., Schimann, H., Sommeria-Klein, G., and Taberlet, P. (2016). Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biology & Biochemistry 96, 16–19.
Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA.Crossref | GoogleScholarGoogle Scholar |

Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F., Chariton, A. A., Creer, S., Coissac, E., Deagle, B. E., De Barba, M., Dickie, I. A., Dumbrell, A. J., Ficetola, G. F., Fierer, N., Fumagalli, L., Gilbert, M. T. P., Jarman, S., Jumpponen, A., Kauserud, H., Orlando, L., Pansu, J., Pawlowski, J., Tedersoo, L., Thomsen, P. F., Willerslev, E., and Taberlet, P. (2019). DNA metabarcoding: need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology 28, 1857–1862.
DNA metabarcoding: need for robust experimental designs to draw sound ecological conclusions.Crossref | GoogleScholarGoogle Scholar | 31033079PubMed |