Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Composition and co-occurrence network of the rhizosphere bacterial community of two emergent macrophytes and implications for phytoremediation

Xiaomin Zhang A , Rujia He A B , Rui Su A , Jin Zeng https://orcid.org/0000-0002-3298-4820 B , Qi Zhou A , Rui Huang A , Dayong Zhao https://orcid.org/0000-0003-1149-4491 A E , Lin Guo C , Fei He D and Zhongbo Yu A
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing, 210098, PR China.

B State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China.

C Department of Biological and Environmental Sciences, Texas A&M University, Commerce, TX 76129, USA.

D Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing, 210042, PR China.

E Corresponding author. Email: dyzhao@hhu.edu.cn

Marine and Freshwater Research 72(7) 1053-1064 https://doi.org/10.1071/MF20082
Submitted: 22 March 2020  Accepted: 24 November 2020   Published: 5 February 2021

Abstract

Microorganisms of the rhizosphere play essential roles in plant metabolism, growth and productivity. Phragmites australis and Triarrhena lutarioriparia are two commonly found emergent macrophytes of the Gramineae family. P. australis is widely used in constructed or artificial wetlands, whereas T. lutarioriparia is found in natural environments. Thus, these two macrophytes have different ecological functions within aquatic ecosystems. In this study we used 16S rRNA gene-based high-throughput sequencing to compare the diversity, composition and co-occurrence networks of the rhizosphere bacterial communities of each macrophyte to better understand their respective ecological functions. The results suggested that abundant taxa in the bacterial communities had a higher richness and were more diverse in the bulk soil relative to the rhizosphere compartment. The opposite pattern was found for rare bacteria in the respective microbial communities. The bacterial rhizosphere community of P. australis contained a greater proportion of genera associated with purifying water and improving water quality than that of T. lutarioriparia. P. australis also had a more complex rhizosphere bacterial network than T. lutarioriparia. These findings provide a better understanding of the ecological functions of the two macrophytes and show that adjusting plant–bacteria interactions within the macrophyte rhizosphere community is an important aspect of phytoremediation.

Keywords: Phragmites australis, Triarrhena lutarioriparia, aquatic macrophytes, abundant taxa, rare taxa.


References

Abed, R. M. M., Al-Kharusi, S., Gkorezis, P., Prigent, S., and Headley, T. (2018). Bacterial communities in the rhizosphere of Phragmites australis from an oil-polluted wetland. Archives of Agronomy and Soil Science 64, 360–370.
Bacterial communities in the rhizosphere of Phragmites australis from an oil-polluted wetland.Crossref | GoogleScholarGoogle Scholar |

Ahmad, F., Ahmad, I., and Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research 163, 173–181.
Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities.Crossref | GoogleScholarGoogle Scholar | 16735107PubMed |

Alamri, S. A. (2012). Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake. Saudi Journal of Biological Sciences 19, 435–440.
Biodegradation of microcystin-RR by Bacillus flexus isolated from a Saudi freshwater lake.Crossref | GoogleScholarGoogle Scholar | 23961204PubMed |

Alamri, S. A. Alamri, S. A. (2013). Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters. Saudi Journal of Biological Sciences 20, 357–363.
Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters.Crossref | GoogleScholarGoogle Scholar | 24235872PubMed |

Bacci, G., Cerri, M., Lastrucci, L., Ferranti, F., Ferri, V., Foggi, B., Gigante, D., Venanzoni, R., Viciani, D., Mengoni, A., Reale, L., and Coppi, A. (2018). Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations. The Science of the Total Environment 642, 708–722.
Applying predictive models to decipher rhizobacterial modifications in common reed die-back affected populations.Crossref | GoogleScholarGoogle Scholar | 29913366PubMed |

Badri, D. V., and Vivanco, J. M. (2009). Regulation and function of root exudates. Plant, Cell & Environment 32, 666–681.
Regulation and function of root exudates.Crossref | GoogleScholarGoogle Scholar |

Banerjee, S., Kirkby, C. A., Schmutter, D., Bissett, A., Kirkegaard, J. A., and Richardson, A. E. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biology & Biochemistry 97, 188–198.
Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil.Crossref | GoogleScholarGoogle Scholar |

Barea, J. M., Navarro, E., and Montoya, E. (1976). Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. The Journal of Applied Bacteriology 40, 129–134.
Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria.Crossref | GoogleScholarGoogle Scholar | 1270366PubMed |

Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In ‘Proceedings of the Third International AAAI Conference on Weblogs and Social Media’, 17–20 May 2009. pp. 361–362. (Third International ICWSM Conference: San Jose, CA, USA.)

Becklin, K. M., Hertweck, K. L., and Jumpponen, A. (2012). Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microbial Ecology 63, 682–693.
Host identity impacts rhizosphere fungal communities associated with three alpine plant species.Crossref | GoogleScholarGoogle Scholar | 22038036PubMed |

Berendsen, R. L., Pieterse, C. M., and Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science 17, 478–486.
The rhizosphere microbiome and plant health.Crossref | GoogleScholarGoogle Scholar | 22564542PubMed |

Bertin, C., Yang, X., and Weston, L. A. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil 256, 67–83.
The role of root exudates and allelochemicals in the rhizosphere.Crossref | GoogleScholarGoogle Scholar |

Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., and Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10, 57–59.
Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing.Crossref | GoogleScholarGoogle Scholar | 23202435PubMed |

Bond, D. R., and Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology 69, 1548–1555.
Electricity production by Geobacter sulfurreducens attached to electrodes.Crossref | GoogleScholarGoogle Scholar | 12620842PubMed |

Bond, D. R., Holmes, D. E., Tender, L. M., and Lovley, D. R. (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483–485.
Electrode-reducing microorganisms that harvest energy from marine sediments.Crossref | GoogleScholarGoogle Scholar | 11799240PubMed |

Borruso, L., Bacci, G., Mengoni, A., De Philippis, R., and Brusetti, L. (2014). Rhizosphere effect and salinity competing to shape microbial communities in Phragmites australis (Cav.) Trin. ex-Steud. FEMS Microbiology Letters 359, 193–200.
Rhizosphere effect and salinity competing to shape microbial communities in Phragmites australis (Cav.) Trin. ex-Steud.Crossref | GoogleScholarGoogle Scholar | 25131902PubMed |

Bowen, J. L., Kearns, P. J., Byrnes, J. E. K., Wigginton, S., Allen, W. J., Greenwood, M., Tran, K., Yu, J., Cronin, J. T., and Meyerson, L. A. (2017). Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant. Nature Communications 8, 433.
Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant.Crossref | GoogleScholarGoogle Scholar | 28874666PubMed |

Cao, X., Zhao, D., Xu, H., Huang, R., Zeng, J., and Yu, Z. (2018). Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: a network analysis. Scientific Reports 8, 8890.
Heterogeneity of interactions of microbial communities in regions of Taihu Lake with different nutrient loadings: a network analysis.Crossref | GoogleScholarGoogle Scholar | 30349056PubMed |

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., Mcdonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336.
QIIME allows analysis of high-throughput community sequencing data.Crossref | GoogleScholarGoogle Scholar | 20383131PubMed |

Chaparro, J. M., Sheflin, A. M., Manter, D. K., and Vivanco, J. M. (2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils 48, 489–499.
Manipulating the soil microbiome to increase soil health and plant fertility.Crossref | GoogleScholarGoogle Scholar |

Chen, W., Pan, Y., Yu, L., Yang, J., and Zhang, W. (2017). Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, southeast China. Frontiers in Microbiology 8, 1912.
Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, southeast China.Crossref | GoogleScholarGoogle Scholar | 29075237PubMed |

Corteselli, E. M., Aitken, M. D., and Singleton, D. R. (2017). Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. International Journal of Systematic and Evolutionary Microbiology 67, 311–318.
Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds.Crossref | GoogleScholarGoogle Scholar | 27902243PubMed |

Cram, J. A., Xia, L. C., Needham, D. M., Sachdeva, R., Sun, F., and Fuhrman, J. A. (2015). Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. The ISME Journal 9, 2573–2586.
Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes.Crossref | GoogleScholarGoogle Scholar | 25989373PubMed |

Das, P., Ji, B., Kovatcheva-Datchary, P., Bäckhed, F., and Nielsen, J. (2018). In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS One 13, e0195161.
In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis.Crossref | GoogleScholarGoogle Scholar | 30458054PubMed |

Ding, Z., Wu, J., You, A., Huang, B., and Cao, C. (2017). Effects of heavy metals on soil microbial community structure and diversity in the rice (Oryza sativa L. subsp. Japonica, Food Crops Institute of Jiangsu Academy of Agricultural Sciences) rhizosphere. Soil Science and Plant Nutrition 63, 75–83.
Effects of heavy metals on soil microbial community structure and diversity in the rice (Oryza sativa L. subsp. Japonica, Food Crops Institute of Jiangsu Academy of Agricultural Sciences) rhizosphere.Crossref | GoogleScholarGoogle Scholar |

Fan, K., Cardona, C., Li, Y., Shi, Y., Xiang, X., Shen, C., Wang, H., Gilbert, J. A., and Chu, H. (2017). Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology & Biochemistry 113, 275–284.
Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields.Crossref | GoogleScholarGoogle Scholar |

Faulwetter, J. L., Burr, M. D., Parker, A. E., Stein, O. R., and Camper, A. K. (2013). Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms. Microbial Ecology 65, 111–127.
Influence of season and plant species on the abundance and diversity of sulfate reducing bacteria and ammonia oxidizing bacteria in constructed wetland microcosms.Crossref | GoogleScholarGoogle Scholar | 22961363PubMed |

Faust, K., Sathirapongsasuti, J. F., Izard, J., Segata, N., Gevers, D., Raes, J., and Huttenhower, C. (2012). Microbial co-occurrence relationships in the human microbiome. PLoS Computational Biology 8, e1002606.
Microbial co-occurrence relationships in the human microbiome.Crossref | GoogleScholarGoogle Scholar | 22807668PubMed |

Feng, M., Adams, J. M., Fan, K., Shi, Y., Sun, R., Wang, D., Guo, X., and Chu, H. (2018). Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biology & Biochemistry 126, 151–158.
Long-term fertilization influences community assembly processes of soil diazotrophs.Crossref | GoogleScholarGoogle Scholar |

Fischer, S. E., Jofré, E. C., Cordero, P. V., Gutiérrez Mañero, F. J., and Mori, G. B. (2010). Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie van Leeuwenhoek 97, 241–251.
Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi.Crossref | GoogleScholarGoogle Scholar | 20020326PubMed |

Fishman, K. S., Akimov, V. N., Suzina, N. E., Vainshtein, M. B., and Liang, X. (2013). Sulfate-reducing bacteria Desulfobulbus sp. strain BH from a freshwater lake in Guizhou Province, China. Inland Water Biology 6, 13–17.
Sulfate-reducing bacteria Desulfobulbus sp. strain BH from a freshwater lake in Guizhou Province, China.Crossref | GoogleScholarGoogle Scholar |

Franke-Whittle, I. H., Manici, L. M., Insam, H., and Stres, B. (2015). Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards. Plant and Soil 395, 317–333.
Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards.Crossref | GoogleScholarGoogle Scholar |

Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Computational Biology 8, e1002687.
Inferring correlation networks from genomic survey data.Crossref | GoogleScholarGoogle Scholar | 23028285PubMed |

Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature 459, 193–199.
Microbial community structure and its functional implications.Crossref | GoogleScholarGoogle Scholar | 19444205PubMed |

Gao, T., and Shi, X. (2018). Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.). Archives of Microbiology 200, 869–876.
Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.).Crossref | GoogleScholarGoogle Scholar | 29455240PubMed |

Garbeva, P., Van Elsas, J. D., and Van Veen, J. A. (2008). Rhizosphere microbial community and its response to plant species and soil history. Plant and Soil 302, 19–32.
Rhizosphere microbial community and its response to plant species and soil history.Crossref | GoogleScholarGoogle Scholar |

Guimerà, R., and Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature 433, 895–900.
Functional cartography of complex metabolic networks.Crossref | GoogleScholarGoogle Scholar | 15729348PubMed |

Haichar, F. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., Heulin, T., and Achouak, W. (2008). Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal 2, 1221–1230.
Plant host habitat and root exudates shape soil bacterial community structure.Crossref | GoogleScholarGoogle Scholar | 18754043PubMed |

Herrmann, M., Saunders, A. M., and Schramm, A. (2009). Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments. Applied and Environmental Microbiology 75, 3127–3136.
Effect of lake trophic status and rooted macrophytes on community composition and abundance of ammonia-oxidizing prokaryotes in freshwater sediments.Crossref | GoogleScholarGoogle Scholar | 19304820PubMed |

Huang, X., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q., and Vivanco, J. M. (2014). Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92, 267–275.
Rhizosphere interactions: root exudates, microbes, and microbial communities.Crossref | GoogleScholarGoogle Scholar |

Huang, R., Zeng, J., Zhao, D., Cook, K. V., Hambright, K. D., and Yu, Z. (2020). Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake. Limnology and Oceanography 65, S38–S48.
Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake.Crossref | GoogleScholarGoogle Scholar |

Jiao, C., Zhao, D., Huang, R., Cao, X., Zeng, J., Lin, Y., and Zhao, W. (2018). Abundant and rare bacterioplankton in freshwater lakes subjected to different levels of tourism disturbances. Water 10, 1075.
Abundant and rare bacterioplankton in freshwater lakes subjected to different levels of tourism disturbances.Crossref | GoogleScholarGoogle Scholar |

Jones, D. L., Nguyen, C., and Finlay, R. D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil 321, 5–33.
Carbon flow in the rhizosphere: carbon trading at the soil–root interface.Crossref | GoogleScholarGoogle Scholar |

Kim, T.-S., Jeong, J.-Y., Wells, G. F., and Park, H.-D. (2013). General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor. Applied Microbiology and Biotechnology 97, 1755–1765.
General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor.Crossref | GoogleScholarGoogle Scholar | 22526777PubMed |

Kuzyakov, Y., and Razavi, B. S. (2019). Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biology & Biochemistry 135, 343–360.
Rhizosphere size and shape: temporal dynamics and spatial stationarity.Crossref | GoogleScholarGoogle Scholar |

LeBlanc, N., Essarioui, A., Kinkel, L., and Kistler, H. C. (2017). Phylogeny, plant species, and plant diversity influence carbon use phenotypes among Fusarium populations in the rhizosphere microbiome. Phytobiomes Journal 1, 150–157.
Phylogeny, plant species, and plant diversity influence carbon use phenotypes among Fusarium populations in the rhizosphere microbiome.Crossref | GoogleScholarGoogle Scholar |

Li, X., Zhang, Y. N., Ding, C., Jia, Z., He, Z., Zhang, T., and Wang, X. (2015). Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biology and Fertility of Soils 51, 935–946.
Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness.Crossref | GoogleScholarGoogle Scholar |

Lin, Z., Zhen, Z., Ren, L., Yang, J., Luo, C., Zhong, L., Hu, H., Liang, Y., Li, Y., and Zhang, D. (2018). Effects of two ecological earthworm species on atrazine degradation performance and bacterial community structure in red soil. Chemosphere 196, 467–475.
Effects of two ecological earthworm species on atrazine degradation performance and bacterial community structure in red soil.Crossref | GoogleScholarGoogle Scholar | 29324386PubMed |

Lissner, J., Schierup, H.-H., Comín, F. A., and Astorga, V. (1999a). Effect of climate on the salt tolerance of two Phragmites australis populations: I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquatic Botany 64, 317–333.
Effect of climate on the salt tolerance of two Phragmites australis populations: I. Growth, inorganic solutes, nitrogen relations and osmoregulation.Crossref | GoogleScholarGoogle Scholar |

Lissner, J., Schierup, H.-H., Comín, F. A., and Astorga, V. (1999b). Effect of climate on the salt tolerance of two Phragmites australis populations: II. Diurnal CO2 exchange and transpiration. Aquatic Botany 64, 335–350.
Effect of climate on the salt tolerance of two Phragmites australis populations: II. Diurnal CO2 exchange and transpiration.Crossref | GoogleScholarGoogle Scholar |

Logares, R., Audic, S., Bass, D., Bittner, L., Boutte, C., Christen, R., Claverie, J.-M., Decelle, J., Dolan, J. R., Dunthorn, M., Edvardsen, B., Gobet, A., Kooistra, W. H. C. F., Mahé, F., Not, F., Ogata, H., Pawlowski, J., Pernice, M. C., Romac, S., Shalchian-Tabrizi, K., Simon, N., Stoeck, T., Santini, S., Siano, R., Wincker, P., Zingone, A., Richards, T. A., De Vargas, C., and Massana, R. (2014). Patterns of rare and abundant marine microbial eukaryotes. Current Biology 24, 813–821.
Patterns of rare and abundant marine microbial eukaryotes.Crossref | GoogleScholarGoogle Scholar | 24704080PubMed |

Loy, A., Schulz, C., Lucker, S., Schopfer-Wendels, A., Stoecker, K., Baranyi, C., Lehner, A., and Wagner, M. (2005). 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order ‘Rhodocyclales’. Applied and Environmental Microbiology 71, 1373–1386.
16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order ‘Rhodocyclales’.Crossref | GoogleScholarGoogle Scholar | 15746340PubMed |

Lupatini, M., Suleiman, A. K. A., Jacques, R. J. S., Antoniolli, Z. I., De Siqueira Ferreira, A., Kuramae, E. E., and Roesch, L. F. W. (2014). Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science 2, 10.
Network topology reveals high connectance levels and few key microbial genera within soils.Crossref | GoogleScholarGoogle Scholar |

Ma, Q., Qu, Y., Shen, W., Zhang, Z., Wang, J., Liu, Z., Li, D., Li, H., and Zhou, J. (2015). Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresource Technology 179, 436–443.
Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing.Crossref | GoogleScholarGoogle Scholar | 25569032PubMed |

Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P. C., Xu, J., and Gilbert, J. A. (2016). Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal 10, 1891–1901.
Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China.Crossref | GoogleScholarGoogle Scholar | 26771927PubMed |

Madigan, M., Cox, S. S., and Stegeman, R. A. (1984). Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. Journal of Bacteriology 157, 73–78.
Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae.Crossref | GoogleScholarGoogle Scholar | 6581158PubMed |

Majeed, A., Abbasi, M. K., Hameed, S., Imran, A., and Rahim, N. (2015). Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology 6, 198.
Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion.Crossref | GoogleScholarGoogle Scholar | 25852661PubMed |

Marasco, R., Mosqueira, M. J., Fusi, M., Ramond, J.-B., Merlino, G., Booth, J. M., Maggs-Kölling, G., Cowan, D. A., and Daffonchio, D. (2018). Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6, 215.
Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host.Crossref | GoogleScholarGoogle Scholar | 30514367PubMed |

Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A., and Tsai, S. M. (2014). Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal 8, 1577–1587.
Taxonomical and functional microbial community selection in soybean rhizosphere.Crossref | GoogleScholarGoogle Scholar | 24553468PubMed |

Ofek, M., Voronov-Goldman, M., Hadar, Y., and Minz, D. (2014). Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology 16, 2157–2167.
Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities.Crossref | GoogleScholarGoogle Scholar | 23962203PubMed |

Philippot, L., Raaijmakers, J. M., Lemanceau, P., and Van Der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews. Microbiology 11, 789–799.
Going back to the roots: the microbial ecology of the rhizosphere.Crossref | GoogleScholarGoogle Scholar | 24056930PubMed |

Pietrangelo, L., Bucci, A., Maiuro, L., Bulgarelli, D., and Naclerio, G. (2018). Unraveling the composition of the root-associated bacterial microbiota of Phragmites australis and Typha latifolia. Frontiers in Microbiology 9, 1650.
Unraveling the composition of the root-associated bacterial microbiota of Phragmites australis and Typha latifolia.Crossref | GoogleScholarGoogle Scholar | 30116224PubMed |

Preston, G. M. (2004). Plant perceptions of plant growth-promoting Pseudomonas. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 907–918.
Plant perceptions of plant growth-promoting Pseudomonas.Crossref | GoogleScholarGoogle Scholar | 15306406PubMed |

Qin, B., Xu, P., Wu, Q., Luo, L., and Zhang, Y. (2007). Environmental issues of Lake Taihu, China. Hydrobiologia 581, 3–14.
Environmental issues of Lake Taihu, China.Crossref | GoogleScholarGoogle Scholar |

Reetha, D. S. M. (2009). Assessment of plant growth promoting activities of bacterial isolates from the rhizophere of tomato (Lycopersicon esculentum L.). Recent Research in Science and Technology 1, 26–29.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75, 7537–7541.
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.Crossref | GoogleScholarGoogle Scholar | 19801464PubMed |

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., and Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology 12, R60.
Metagenomic biomarker discovery and explanation.Crossref | GoogleScholarGoogle Scholar | 21702898PubMed |

Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J., and Firestone, M. K. (2016). The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecology Letters 19, 926–936.
The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages.Crossref | GoogleScholarGoogle Scholar | 27264635PubMed |

Silva, M. C. P., Figueiredo, A. F., Andreote, F. D., and Cardoso, E. J. B. N. (2013). Plant growth promoting bacteria in Brachiaria brizantha. World Journal of Microbiology & Biotechnology 29, 163–171.
Plant growth promoting bacteria in Brachiaria brizantha.Crossref | GoogleScholarGoogle Scholar |

Singleton, D. R., Dickey, A. N., Scholl, E. H., Wright, F. A., and Aitken, M. D. (2015). Complete genome sequence of a novel bacterium within the family Rhodocyclaceae that degrades polycyclic aromatic hydrocarbons. Genome Announcements 3, e00251-15.
Complete genome sequence of a novel bacterium within the family Rhodocyclaceae that degrades polycyclic aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 25858839PubMed |

Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology 132, 44–51.
Root exudation and rhizosphere biology.Crossref | GoogleScholarGoogle Scholar | 12746510PubMed |

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73, 5261–5267.
Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.Crossref | GoogleScholarGoogle Scholar | 17586664PubMed |

Wang, Y., Cao, X., Zeng, J., Li, H., Wu, Q. L., and Zhao, D. (2020). Distinct shifts in bacterioplankton community composition and functional gene structure between macrophyte- and phytoplankton-dominated regimes in a large shallow lake. Limnology and Oceanography 65, S208–S219.
Distinct shifts in bacterioplankton community composition and functional gene structure between macrophyte- and phytoplankton-dominated regimes in a large shallow lake.Crossref | GoogleScholarGoogle Scholar |

Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., Wu, M., Xie, G., Haft, D. H., Sait, M., Badger, J., Barabote, R. D., Bradley, B., Brettin, T. S., Brinkac, L. M., Bruce, D., Creasy, T., Daugherty, S. C., Davidsen, T. M., Deboy, R. T., Detter, J. C., Dodson, R. J., Durkin, A. S., Ganapathy, A., Gwinn-Giglio, M., Han, C. S., Khouri, H., Kiss, H., Kothari, S. P., Madupu, R., Nelson, K. E., Nelson, W. C., Paulsen, I., Penn, K., Ren, Q., Rosovitz, M. J., Selengut, J. D., Shrivastava, S., Sullivan, S. A., Tapia, R., Thompson, L. S., Watkins, K. L., Yang, Q., Yu, C., Zafar, N., Zhou, L., and Kuske, C. R. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied and Environmental Microbiology 75, 2046–2056.
Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils.Crossref | GoogleScholarGoogle Scholar | 19201974PubMed |

Xue, Y., Chen, H., Yang, J. R., Liu, M., Huang, B., and Yang, J. (2018). Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. The ISME Journal 12, 2263–2277.
Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom.Crossref | GoogleScholarGoogle Scholar | 29899512PubMed |

Yang, J. I., Ruegger, P. M., Mckenry, M. V., Becker, J. O., and Borneman, J. (2012). Correlations between root-associated microorganisms and peach replant disease symptoms in a California soil. PLoS One 7, e46420.
Correlations between root-associated microorganisms and peach replant disease symptoms in a California soil.Crossref | GoogleScholarGoogle Scholar | 23071565PubMed |

Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C., and Chu, H. (2016). Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology & Biochemistry 92, 41–49.
Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition.Crossref | GoogleScholarGoogle Scholar |

Zhang, Y., Dong, S., Gao, Q., Ganjurjav, H., Wang, X., and Geng, W. (2019). ‘Rare biosphere’ plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes. Agriculture, Ecosystems & Environment 279, 187–193.
‘Rare biosphere’ plays important roles in regulating soil available nitrogen and plant biomass in alpine grassland ecosystems under climate changes.Crossref | GoogleScholarGoogle Scholar |

Zhao, D., Xu, H., Zeng, J., Cao, X., Huang, R., Shen, F., and Yu, Z. (2017). Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiology Ecology 93, fix062.
Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake.Crossref | GoogleScholarGoogle Scholar | 28498948PubMed |

Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., and Zhi, X. (2010). Functional molecular ecological networks. mBio 1, e00169-10.
Functional molecular ecological networks.Crossref | GoogleScholarGoogle Scholar | 20941329PubMed |

Zhou, J., Deng, Y., Luo, F., He, Z., Yang, Y., and Relman, D. (2011). Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, e00122-11.
Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2.Crossref | GoogleScholarGoogle Scholar | 21791581PubMed |

Zhou, Q., Zhang, X., He, R., Wang, S., Jiao, C., Huang, R., He, X., Zeng, J., and Zhao, D. (2019). The composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of Phragmites australis. Diversity 11, 98.
The composition and assembly of bacterial communities across the rhizosphere and phyllosphere compartments of Phragmites australis.Crossref | GoogleScholarGoogle Scholar |