Structure, distribution patterns and ecological responses to hydrological changes in benthic macroinvertebrate assemblages in a regulated semi-arid river: baseline for biomonitoring studies
Marta Leiva A B D , Mercedes Marchese C and Liliana Diodato BA Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABA, Argentina.
B Instituto de Protección Vegetal (INPROVE), Facultad de Ciencias Forestales (FCF), Universidad Nacional de Santiago del Estero (UNSE), Avenida Belgrano (Sur) 1912, Santiago del Estero, Santiago del Estero, CP 4200, Argentina.
C Instituto Nacional de Limnología (INALI), CONICET–Universidad Nacional del Litoral, Ciudad Universitaria – Paraje El Pozo, Santa Fe, CP 3000, Argentina.
D Corresponding author. Email: martaleiva@unse.edu.ar
Marine and Freshwater Research 72(2) 200-212 https://doi.org/10.1071/MF19283
Submitted: 18 August 2019 Accepted: 21 April 2020 Published: 22 June 2020
Abstract
Biological monitoring requires a comprehensive baseline of assemblage distribution patterns and their environmental drivers. In this study we evaluated benthic macroinvertebrates in a regulated river, located in a semi-arid region, which has a seasonal flood pulse and is affected by several anthropogenic pressures. Taxonomic and trophic structures of benthic macroinvertebrate assemblages were analysed in terms of their longitudinal distribution, hydrological regime and environmental factors, including the effects of hydromorphology, riparian land use and water abstraction. Most taxa were generalists and classified in the collector–gatherer functional feeding group. A large taxonomic replacement was associated with hydromorphological characteristics. Local environmental variables were critical for macroinvertebrate assemblages. There was significant temporal variability regarding seasonal flood pulse. Water abstraction for irrigation had a strong effect on assemblage structure. We suggest some challenges and issues for successful implementation of biomonitoring tools in the Dulce River, related primarily to high spatiotemporal variability.
Additional keywords: Chaco region, spates, spatiotemporal variability, water diversion.
References
Almeida, E. F., Oliveira, R. B., Mugnai, R., Nessimian, J. L., and Baptista, D. F. (2009). Effects of small dams on the benthic community of streams in an Atlantic forest area of southeastern brazil. International Review of Hydrobiology 94, 179–193.| Effects of small dams on the benthic community of streams in an Atlantic forest area of southeastern brazil.Crossref | GoogleScholarGoogle Scholar |
American Public Health Association, American Water Works Association, and Water Pollution Control Federation (1989). ‘Métodos normalizados para el análisis de aguas potables y residuales.’ (Ediciones Díaz de Santos: Madrid, Spain.) [In Spanish].
Anderson, M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253.
| Distance-based tests for homogeneity of multivariate dispersions.Crossref | GoogleScholarGoogle Scholar | 16542252PubMed |
Anderson, M. J., and Miller, R. B. (2004). Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecology 305, 191–221.
| Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand.Crossref | GoogleScholarGoogle Scholar |
Angella, G., García Vila, M., López, J. M., Barraza, G., Salgado, R., Prieto Angueira, S., Tomsic, P., and Fereres, E. (2016). Quantifying yield and water productivity gaps in an irrigation district under rotational delivery schedule. Irrigation Science 34, 71–83.
| Quantifying yield and water productivity gaps in an irrigation district under rotational delivery schedule.Crossref | GoogleScholarGoogle Scholar |
Arthington, A. H., Bunn, S. E., LeRoy Poff, N., and Naiman, R. J. (2006). The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16, 1311–1318.
| The challenge of providing environmental flow rules to sustain river ecosystems.Crossref | GoogleScholarGoogle Scholar | 16937799PubMed |
Arthington, A. H., Naiman, R. J., McClain, M. E., and Nilsson, C. (2010). Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology 55, 1–16.
| Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities.Crossref | GoogleScholarGoogle Scholar |
Arthington, A. H., Kennen, J. G., Stein, E. D., and Webb, J. A. (2018). Recent advances in environmental flows science and water management – innovation in the Anthropocene. Freshwater Biology 63, 1022–1034.
| Recent advances in environmental flows science and water management – innovation in the Anthropocene.Crossref | GoogleScholarGoogle Scholar |
Association Française de Normalisation (2002). Détermination de l’indice oligochètes de bioindication des sédiments (IOBS). Norme française. Indice de classement: T 90-390. ICS: 13.020.40; 13.060.70. Available at https://www.boutique.afnor.org/norme/nf-t90-390/qualite-de-l-eau-determination-de-l-indice-oligochetes-de-bioindication-des-sediments-iobs/article/762637/fa117462 [In French, verified 4 May 2020].
Baselga, A., and Orme, C. D. L. (2012). Betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3, 808–812.
| Betapart: an R package for the study of beta diversity.Crossref | GoogleScholarGoogle Scholar |
Brown, A., and Pacheco, S. (2006). Propuesta de actualización del mapa ecorregional de la Argentina. In ‘La Situación Ambiental Argentina 2005’. (Eds A. Brown, U. Martinez Ortiz, M. Acerbi, and J. Corcuera.) pp. 28–31. (Fundación Vida Silvestre: Buenos Aires, Argentina.) Available at https://www.vidasilvestre.org.ar/ sala_redaccion/?2340/la-situacin-ambiental-argentina-2005 [Verified 4 May 2020].
Bunn, S. E., and Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30, 492–507.
| Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity.Crossref | GoogleScholarGoogle Scholar | 12481916PubMed |
Cabecinha, E., Hughes, S., and Cortes, R. (2018). Consistent, congruent or redundant? Lotic community and organisational response to disturbance. Ecological Indicators 89, 175–187.
| Consistent, congruent or redundant? Lotic community and organisational response to disturbance.Crossref | GoogleScholarGoogle Scholar |
Carpenter, J. H. (1965). The accuracy of the Winkler method for dissolved oxygen analysis – notes. Limnology and Oceanography 10, 141–143.
| The accuracy of the Winkler method for dissolved oxygen analysis – notes.Crossref | GoogleScholarGoogle Scholar |
Chiu, M. C., Chou, T. Y., and Kuo, M. H. (2018). Seasonal patterns of stream macroinvertebrate communities in response to anthropogenic stressors in monsoonal Taiwan. Journal of Asia-Pacific Entomology 21, 423–429.
| Seasonal patterns of stream macroinvertebrate communities in response to anthropogenic stressors in monsoonal Taiwan.Crossref | GoogleScholarGoogle Scholar |
Comité de Cuenca del Río Salí Dulce (2018). Comité de Cuenca del Río Salí Dulce. Available at https://www.argentina.gob.ar/secretaria-de-infraestructura-y-politica-hidrica/comite-de-cuenca-del-rio-sali-dulce [Verified 7 July 2018].
Culp, J. M., Armanini, D. G., Dunbar, M. J., Orlofske, J. M., Poff, N. L., Pollard, A. I., Yates, A. G., and Hose, G. C. (2011). Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7, 187–197.
| Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction.Crossref | GoogleScholarGoogle Scholar | 21442732PubMed |
da Silva, F. L., Moreira, D. C., Bochini, G. L., and Ruiz, S. S. (2008). Hábitos alimentares de larvas de Chironomidae (Insecta: Diptera) do córrego Vargem Limpa, Bauru, SP, Brasil. Biotemas 21, 155–159.
| Hábitos alimentares de larvas de Chironomidae (Insecta: Diptera) do córrego Vargem Limpa, Bauru, SP, Brasil.Crossref | GoogleScholarGoogle Scholar |
DeColibus, D. T., Backus, J. K., Howard, N. M., and Riley, L. A. (2014). Macroinvertebrate community repsonse to a spate disturbance in a third order Ohio stream. Proceedings of the Indiana Academy of Sciences 123, 112–121.
Dewson, Z., James, A. B. W., and Death, R. G. (2007). A review of the consequences of decreased flow for instream habitat and macroinvertebrates. Journal of the North American Benthological Society 26, 401–415.
| A review of the consequences of decreased flow for instream habitat and macroinvertebrates.Crossref | GoogleScholarGoogle Scholar |
Dole-Olivier, M.-J. (2011). The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Marine and Freshwater Research 62, 1281–1302.
| The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects.Crossref | GoogleScholarGoogle Scholar |
Extence, C. A., Balbi, D. M., and Chadd, R. P. (1999). River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated Rivers: Research and Management 15, 545–574.
| River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives.Crossref | GoogleScholarGoogle Scholar |
Farías, H. D. (2007). Estudios Hidráulicos y Fluviales del Río Dulce para Determinación de Línea de Ribera e Impactos de Obras. (Consejo Federal de Inversiones y Universidad Nacional de Santiago del Estero.) Available at http://biblioteca.cfi.org.ar/documento/estudios-hidraulicos-y-fluviales-del-rio-dulce-para-determinacion-de-linea-de-ribera-e-impactos-de-obras-provincia-de-santiago-del-estero/ [Verified 4 May 2020].
Fesl, C. (2002). Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river. Freshwater Biology 47, 1065–1087.
| Biodiversity and resource use of larval chironomids in relation to environmental factors in a large river.Crossref | GoogleScholarGoogle Scholar |
Fu, L., Jiang, Y., Ding, J., Liu, Q., Peng, Q.-Z., and Kang, M.-Y. (2016). Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China. Journal of Freshwater Ecology 31, 21–35.
| Impacts of land use and environmental factors on macroinvertebrate functional feeding groups in the Dongjiang River basin, southeast China.Crossref | GoogleScholarGoogle Scholar |
Gallego, A. (2012). ‘Santiago del Estero y el Agua: Crónica de una relación controvertida.’ (Editorial Lucrecia: Santiago del Estero, Argentina.)
Garófano-Gómez, V., Martínez-Capel, F., Peredo-Parada, M., Marín, E. J. O., Mas, R. M., Costa, R. M. S., and Pinar-Arenas, J. L. (2011). Assessing hydromorphological and floristic patterns along a regulated Mediterranean river: the Serpis River (Spain). Limnetica 30, 307–328.
Gee, G. W., and Bauder, J. W. (1986). Particle-size analysis. In ‘Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. Soil Science Society of America’. (Ed. A. Klute.) pp. 383–411. (American Society of Agronomy: Madison, WI, USA.)
Giménez, A. M., Hernández, P., and Figueroa, M. E. (2002). La diversidad forestal en el Chaco Semiárido. In ‘Los Bosques actuales del Chaco semiárido argentino. Ecoanatomía y biodiversidad. Una mirada propositiva’. (Eds A. M. Giménez and J. G. Moglia.) pp. 45–80. (Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero: Santiago del Estero, Argentina.)
Hancock, P. J., and Boulton, A. J. (2005). The effects of an environmental flow release on water quality in the hyporheic zone of the Hunter River, Australia. Hydrobiologia 552, 75–85.
| The effects of an environmental flow release on water quality in the hyporheic zone of the Hunter River, Australia.Crossref | GoogleScholarGoogle Scholar |
Hepp, L. U., and Melo, A. S. (2013). Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703, 239–246.
| Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances.Crossref | GoogleScholarGoogle Scholar |
Hodkinson, I. D. (1981). Reviewed work: An introduction to the aquatic insects of North America by R. W. Merritt, K. W. Cummins. Journal of Animal Ecology 50, 330–331.
| Reviewed work: An introduction to the aquatic insects of North America by R. W. Merritt, K. W. Cummins.Crossref | GoogleScholarGoogle Scholar |
Holt, C. R. (2016). Ecological impacts of flow regulation on rivers and floodplains: Macroinvertebrate dynamics of the Chattahoochee, Altamaha, and Savannah rivers. Ph.D. Thesis, University of Georgia. Available at https://getd.libs.uga.edu/pdfs/holt_courtney_r_201605_phd.pdf [Verified 4 May 2020].
James, A. B. W., and Suren, A. M. (2009). The response of invertebrates to a gradient of flow reduction – an instream channel study in a New Zealand lowland river. Freshwater Biology 54, 2225–2242.
| The response of invertebrates to a gradient of flow reduction – an instream channel study in a New Zealand lowland river.Crossref | GoogleScholarGoogle Scholar |
Jouanneau, S., Recoules, L., Durand, M. J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B., and Thouand, G. (2014). Methods for assessing biochemical oxygen demand (BOD): a review. Water Research 49, 62–82.
| Methods for assessing biochemical oxygen demand (BOD): a review.Crossref | GoogleScholarGoogle Scholar | 24316182PubMed |
Karr, J. R. (1999). Defining and measuring river health. Freshwater Biology 41, 221–234.
| Defining and measuring river health.Crossref | GoogleScholarGoogle Scholar |
Kopf, R. K., Finlayson, C. M., Humphries, P., Sims, N. C., and Hladyz, S. (2015). Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. Bioscience 65, 798–811.
| Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |
Lafont, M., Tixier, G., Marsalek, J., Jézéquel, C., Breil, P., and Schmitt, L. (2012). From research to operational biomonitoring of freshwaters: a suggested conceptual framework and practical solutions. Ecohydrology & Hydrobiology 12, 9–20.
| From research to operational biomonitoring of freshwaters: a suggested conceptual framework and practical solutions.Crossref | GoogleScholarGoogle Scholar |
Lake, P. S. (2013). Resistance, resilience and restoration. Ecological Management & Restoration 14, 20–24.
| Resistance, resilience and restoration.Crossref | GoogleScholarGoogle Scholar |
Larned, S. T., Datry, T., Arscott, D. B., and Tockner, K. (2010). Emerging concepts in temporary-river ecology. Freshwater Biology 55, 717–738.
| Emerging concepts in temporary-river ecology.Crossref | GoogleScholarGoogle Scholar |
Leigh, C. (2013). Dry-season changes in macroinvertebrate assemblages of highly seasonal rivers: responses to low flow, no flow and antecedent hydrology. Hydrobiologia 703, 95–112.
| Dry-season changes in macroinvertebrate assemblages of highly seasonal rivers: responses to low flow, no flow and antecedent hydrology.Crossref | GoogleScholarGoogle Scholar |
Lencioni, V., Marziali, L., and Rossaro, B. (2012). Chironomids as bioindicators of environmental quality in mountain springs. Freshwater Science 31, 525–541.
| Chironomids as bioindicators of environmental quality in mountain springs.Crossref | GoogleScholarGoogle Scholar |
Leunda, P. M., Sistiaga, M., Oscoz, J., and Miranda, R. (2012). Ichthyofauna of a near-natural Pyrenean river: spatio-temporal variability and reach-scale habitat. Environmental Engineering and Management Journal 11, 1111–1124.
| Ichthyofauna of a near-natural Pyrenean river: spatio-temporal variability and reach-scale habitat.Crossref | GoogleScholarGoogle Scholar |
Leung, A. S. L., and Dudgeon, D. (2011). Scales of spatiotemporal variability in macroinvertebrate abundance and diversity in monsoonal streams: detecting environmental change. Freshwater Biology 56, 1193–1208.
| Scales of spatiotemporal variability in macroinvertebrate abundance and diversity in monsoonal streams: detecting environmental change.Crossref | GoogleScholarGoogle Scholar |
Ligeiro, R., Melo, A. S., and Callisto, M. (2010). Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology 55, 424–435.
| Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment.Crossref | GoogleScholarGoogle Scholar |
Maroneze, D., Tupinambás, T., França, J., and Callisto, M. (2011). Effects of flow reduction and spillways on the composition and structure of benthic macroinvertebrate communities in a Brazilian river reach. Brazilian Journal of Biology 71, 639–651.
| Effects of flow reduction and spillways on the composition and structure of benthic macroinvertebrate communities in a Brazilian river reach.Crossref | GoogleScholarGoogle Scholar |
Marsh, N., Sheldon, F., Wettin, P., Taylor, C., and Barma, D. (2012). Guidance on ecological responses and hydrological modelling for low-flow water planning. Waterlines Report Series number 76, National Water Commission, Canberra, ACT, Australia.
Martínez, A., Larrañaga, A., Basaguren, A., Pérez, J., Mendoza-Lera, C., and Pozo, J. (2013). Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia 711, 31–42.
| Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications.Crossref | GoogleScholarGoogle Scholar |
McCluney, K. E., Poff, N. L., Palmer, M. A., Thorp, J. H., Poole, G. C., Williams, B. S., Williams, M. R., and Baron, J. S. (2014). Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations. Frontiers in Ecology and the Environment 12, 48–58.
| Riverine macrosystems ecology: sensitivity, resistance, and resilience of whole river basins with human alterations.Crossref | GoogleScholarGoogle Scholar |
Merritt, R. W., and Cummins, K. W. (1996). ‘An Introduction to the Aquatic Insects of North America.’ (Kendall/Hunt: Dubuque, IO, USA.)
Mesa, L. M. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams. Hydrobiologia 641, 85–95.
| Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams.Crossref | GoogleScholarGoogle Scholar |
Mesa, L. M. (2012). Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams. Brazilian Archives of Biology and Technology 55, 403–410.
| Interannual and seasonal variability of macroinvertebrates in monsoonal climate streams.Crossref | GoogleScholarGoogle Scholar |
Molineri, C., Tejerina, E. G., Torrejón, S. E., Pero, E. J. I., and Hankel, G. E. (2020). Indicative value of different taxonomic levels of Chironomidae for assessing the water quality. Ecological Indicators 108, 105703.
| Indicative value of different taxonomic levels of Chironomidae for assessing the water quality.Crossref | GoogleScholarGoogle Scholar |
Motta, R. L., and Uieda, V. S. (2004). Diet and trophic groups of an aquatic insect community in a tropical stream. Brazilian Journal of Biology 64, 809–817.
| Diet and trophic groups of an aquatic insect community in a tropical stream.Crossref | GoogleScholarGoogle Scholar |
Napieralski, J. A., and Carvalhaes, T. (2016). Urban stream deserts: mapping a legacy of urbanization in the United States. Applied Geography (Sevenoaks, England) 67, 129–139.
| Urban stream deserts: mapping a legacy of urbanization in the United States.Crossref | GoogleScholarGoogle Scholar |
Norris, R. H., and Thoms, M. C. (1999). What is river health. Freshwater Biology 41, 197–209.
| What is river health.Crossref | GoogleScholarGoogle Scholar |
Paggi, A. (2003). Los quironómidos (Diptera) y su empleo como bioindicadores. Biologia Acuatica 21, 50–57.
Pero, E., Hankel, G., Molineri, C., and Domínguez, E. (2019). Correspondence between stream benthic macroinvertebrate assemblages and ecoregions in northwestern Argentina. Freshwater Science 38, 64–76.
| Correspondence between stream benthic macroinvertebrate assemblages and ecoregions in northwestern Argentina.Crossref | GoogleScholarGoogle Scholar |
Poff, N. L., and Zimmerman, J. K. H. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55, 194–205.
| Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows.Crossref | GoogleScholarGoogle Scholar |
Príncipe, R. E., Gualdoni, C. M., Oberto, A. M., Raffaini, G. B., and Corigliano, M. C. (2010). Spatial-temporal patterns of functional feeding groups in mountain streams of Córdoba, Argentina. Ecología Austral 20, 257–268.
Restello, R. M., Biasi, C., de Moraes, P. F. M. B., Gabriel, G., and Hepp, L. U. (2014). Composition and diversity of the Chironomidae in subtropical streams: effects of environmental predictors and temporal analysis. Acta Limnologica Brasiliensia 26, 215–226.
| Composition and diversity of the Chironomidae in subtropical streams: effects of environmental predictors and temporal analysis.Crossref | GoogleScholarGoogle Scholar |
Reynaga, M. C., and Dos Santos, D. A. (2012). Rasgos biológicos de macroinvertebrados de ríos subtropicales: patrones de variación a lo largo de gradientes ambientales espacio-temporales. Ecología Austral 22, 112–120.
Roda, J. C. (2011). Surface water quantity and sediment measurement. In ‘Guide to Hydrological Practices: vol. I: Hydrology – From Measurement to Hydrological Information, and vol. II: Management of Water Resources and Application to Hydrological Practices’. pp. 149–178. (World Meteorological Organization: Geneva, Switzerland.)
Rolls, R. J., and Bond, N. R. (2017). Environmental and ecological effects of flow alteration in surface water ecosystems. In ‘Water for the Environment’. (Ed. A. C. Horne.) pp. 65–82. (Academic Press: London, UK.)
Rolls, R. J., Leigh, C., and Sheldon, F. (2012). Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshwater Science 31, 1163–1186.
| Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration.Crossref | GoogleScholarGoogle Scholar |
Roy, A. H., Capps, K. A., El-Sabaawi, R. W., Jones, K. L., Parr, T. B., Ramírez, A., Smith, R. F., Walsh, C. J., and Wenger, S. J. (2016). Urbanization and stream ecology: diverse mechanisms of change. Freshwater Science 35, 272–277.
| Urbanization and stream ecology: diverse mechanisms of change.Crossref | GoogleScholarGoogle Scholar |
Rubí Bianchi, A., and Cravero, S. A. C. (2010). Atlas climático digital de la República Argentina, (Instituto Nacional de Tecnología Agropecuaria – Estación Experimental Agropecuaria Salta.) Available at https://inta.gob.ar/documentos/atlas-climatico-digital-de-la-republica-argentina [Verified 4 May 2020].
Saigo, M., Marchese, M., and Wantzen, K. M. (2016). A closer look at the main actors of Neotropical floodplain food webs: functional classification and niche overlap of dominant benthic invertebrates in a floodplain lake of Paraná River. Iheringia. Série Zoologia 106, e2016004.
| A closer look at the main actors of Neotropical floodplain food webs: functional classification and niche overlap of dominant benthic invertebrates in a floodplain lake of Paraná River.Crossref | GoogleScholarGoogle Scholar |
Salmaso, F., Crosa, G., Espa, P., Gentili, G., Quadroni, S., and Zaccara, S. (2017). Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions. Environmental Monitoring and Assessment 190, 33.
| Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions.Crossref | GoogleScholarGoogle Scholar | 29264669PubMed |
Serra, S. R. Q., Graça, M. A. S., Dolédec, S., and Feio, M. J. (2017). Chironomidae traits and life history strategies as indicators of anthropogenic disturbance. Environmental Monitoring and Assessment 189, 326.
| Chironomidae traits and life history strategies as indicators of anthropogenic disturbance.Crossref | GoogleScholarGoogle Scholar |
Smythe-McGuiness, Y., Lobegeiger, J., Marshall, J., Prasad, R., Steward, A., Negus, P., McGregor, G., and Choy, S. (2012). Macroinvertebrate responses to altered low-flow hydrology in Queensland rivers. Low Flows Series, Australian Government, National Water Commission, Canberra, ACT, Australia.
Sponseller, R. A., Grimm, N. B., Boulton, A. J., and Sabo, J. L. (2010). Responses of macroinvertebrate communities to long-term flow variability in a Sonoran Desert stream. Global Change Biology 16, 2891–2900.
| Responses of macroinvertebrate communities to long-term flow variability in a Sonoran Desert stream.Crossref | GoogleScholarGoogle Scholar |
Sponseller, R. A., Heffernan, J. A. B., and Fisher, S. G. (2013). On the multiple ecological roles of water in river networks. Ecosphere 4, art17.
| On the multiple ecological roles of water in river networks.Crossref | GoogleScholarGoogle Scholar |
Stubbington, R. (2012). The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Marine and Freshwater Research 63, 293–311.
| The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour.Crossref | GoogleScholarGoogle Scholar |
Stubbington, R., Wood, P. J., and Boulton, A. J. (2009). Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra‐seasonal drought. Hydrological Processes 23, 2252–2263.
| Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra‐seasonal drought.Crossref | GoogleScholarGoogle Scholar |
Swan, C. M., and Brown, B. L. (2014). Using rarity to infer how dendritic network structure shapes biodiversity in riverine communities. Ecography 37, 993–1001.
| Using rarity to infer how dendritic network structure shapes biodiversity in riverine communities.Crossref | GoogleScholarGoogle Scholar |
Thomaz, S. M., Bini, L. M., and Bozelli, R. L. (2007). Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579, 1–13.
| Floods increase similarity among aquatic habitats in river-floodplain systems.Crossref | GoogleScholarGoogle Scholar |
Thompson, W. H., Leege, P. B., Millner, P. D., and Watson, M. E. (2001). Method 05.07-A. Loss on ignition organic matter method. In ‘Test Methods for the Examination of Composing and Compost’. (United States Composting Council: New York, NY, USA.)
Tomanova, S., Goitia, E., and Helešic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in Neotropical streams. Hydrobiologia 556, 251–264.
| Trophic levels and functional feeding groups of macroinvertebrates in Neotropical streams.Crossref | GoogleScholarGoogle Scholar |
Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B., and Lytle, D. A. (2017). Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216.
| Seasonality and predictability shape temporal species diversity.Crossref | GoogleScholarGoogle Scholar | 28144975PubMed |
Trivinho-Strixino, S. (2014). Ordem Diptera. Família Chiromidae. Guia de identificação de larvas. In ‘Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia’. (Eds N. Hamada, J. L. Nessimian, and R. Barbosa Querino.) pp. 457–476. (Editora do INPA: Manaus, Brazil.)
Tromboni, F., and Dodds, W. K. (2017). Relationships between land use and stream nutrient concentrations in a highly urbanized tropical region of Brazil: thresholds and riparian zones. Environmental Management 60, 30–40.
| Relationships between land use and stream nutrient concentrations in a highly urbanized tropical region of Brazil: thresholds and riparian zones.Crossref | GoogleScholarGoogle Scholar | 28405753PubMed |
Vander Vorste, R., Corti, R., Sagouis, A., and Datry, T. (2016). Invertebrate communities in gravel-bed, braided rivers are highly resilient to flow intermittence. Freshwater Science 35, 164–177.
| Invertebrate communities in gravel-bed, braided rivers are highly resilient to flow intermittence.Crossref | GoogleScholarGoogle Scholar |
Villamarín, C. (2012). Estructura y composición de las comunidades de macroinvertebrados acuáticos en ríos altoandinos del Ecuador y Perú. Diseño de un sistema de medida de la calidad del agua con índices multimétricos. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain.
Vivien, R., Tixier, G., and Lafont, M. (2014). Use of oligochaete communities for assessing the quality of sediments in watercourses of the Geneva area (Switzerland) and Artois–Picardie basin (France): proposition of heavy metal toxicity thresholds. Ecohydrology & Hydrobiology 14, 142–151.
| Use of oligochaete communities for assessing the quality of sediments in watercourses of the Geneva area (Switzerland) and Artois–Picardie basin (France): proposition of heavy metal toxicity thresholds.Crossref | GoogleScholarGoogle Scholar |
Walters, A., and Post, D. M. (2011). How low can you go? Impacts of a low flow disturbance on aquatic insect communities. Ecological Applications 21, 163–174.
| How low can you go? Impacts of a low flow disturbance on aquatic insect communities.Crossref | GoogleScholarGoogle Scholar | 21516895PubMed |
Ward, J. V., and Stanford, J. A. (1983). The serial discontinuity concept of lotic ecosystems. In ‘Dynamics of Lotic Ecosystems’. (Eds T. D. Fontaine and S. M. Bartell.) pp. 29–42. (Ann Arbor Science: Ann Arbor, MI, USA.)
Winkler, L. W. (1888). Die Bestimmung des im Wasser gelösten Sauerstoffes. Berichte der Deutschen Chemischen Gesellschaft 21, 2843–2854.
| Die Bestimmung des im Wasser gelösten Sauerstoffes.Crossref | GoogleScholarGoogle Scholar |
Zilli, F. L., Montalto, L., and Marchese, M. (2008). Benthic invertebrate assemblages and functional feeding groups in the Paraná River floodplain (Argentina). Limnologica 38, 159–171.
| Benthic invertebrate assemblages and functional feeding groups in the Paraná River floodplain (Argentina).Crossref | GoogleScholarGoogle Scholar |