Research on Spartina alterniflora using molecular biological techniques: an overview
Lu Xia A B , Wen Yang C , Qifang Geng D , Nasreen Jeelani A B E and Shuqing An A B EA Nanjing University, School of Life Science, Nanjing, 210093, Jiangsu, PR China.
B Nanjing University Ecological Research Institute of Changshu, Changshu, 215500, Jiangsu, PR China.
C Shaanxi Normal University, College of Life Sciences, Xi’an, 710119, PR China.
D The University of Tokyo, Asian Natural Environmental Science Center, 1-1-8 Midori-cho, Nishitokyo, Tokyo, 188-0002, Japan.
E Corresponding authors. Email: anshq@nju.edu.cn; nasreenjeelani1@gmail.com
Marine and Freshwater Research 71(12) 1564-1571 https://doi.org/10.1071/MF19255
Submitted: 25 July 2019 Accepted: 12 November 2019 Published: 29 January 2020
Abstract
Biological invasion is a global issue. Since the double helix structure of DNA molecule was discovered in 1953, more scientific studies have focused on the structure and function of biological macromolecules in invasive organisms using molecular biology techniques, which has contributed to our understanding of their competitive advantages and invasion mechanisms. As a coastal invasive species, there has been considerable interest in Spartina alterniflora. Here we summarise previous studies investigating S. alterniflora using molecular biological techniques from the individual, population and application perspectives. We hope this article will be helpful in future studies on and in the management and utilisation of S. alterniflora in wetlands.
Additional keywords: invasion, molecular ecology.
References
Ainouche, M. L., Fortune, P. M., Salmon, A., Parisod, C., Grandbastien, M. A., Fukunaga, K., Ricou, M., and Misset, M. T. (2009). Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biological Invasions 11, 1159–1173.| Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae).Crossref | GoogleScholarGoogle Scholar |
Ascunce, M. S., Yang, C. C., Oakey, J., Calcaterra, L., Wu, W. J., Shih, C. J., Goudet, J., Ross, K. G., and Shoemaker, D. (2011). Global invasion history of the fire ant Solenapsis invicta. Science 331, 1066–1068.
| Global invasion history of the fire ant Solenapsis invicta.Crossref | GoogleScholarGoogle Scholar | 21350177PubMed |
Baisakh, N., and Subdhi, P. K. (2009). Heat stress alters the expression of salt stress induced genes in smooth cordgrass (Spartina alterniflora L.). Plant Physiology and Biochemistry 47, 232–235.
| Heat stress alters the expression of salt stress induced genes in smooth cordgrass (Spartina alterniflora L.).Crossref | GoogleScholarGoogle Scholar | 19109026PubMed |
Baisakh, N., Subudhi, P. K., and Parami, N. (2006). cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel. Plant Science 170, 1141–1149.
| cDNA-AFLP analysis reveals differential gene expression in response to salt stress in a halophyte Spartina alterniflora Loisel.Crossref | GoogleScholarGoogle Scholar |
Baisakh, N., Subudhi, P. K., and Bhardwaj, P. (2008). Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.). Functional & Integrative Genomics 8, 287–300.
| Primary responses to salt stress in a halophyte, smooth cordgrass (Spartina alterniflora Loisel.).Crossref | GoogleScholarGoogle Scholar |
Baisakh, N., Subdhi, P. K., Arumuganathan, K., Parco, A. P., Harrison, S., Knott, C. A., and Materne, M. D. (2009). Development and interspecific transferability of genic microsatellites markers in Spartina spp. with different genome size. Aquatic Botany 91, 262–266.
| Development and interspecific transferability of genic microsatellites markers in Spartina spp. with different genome size.Crossref | GoogleScholarGoogle Scholar |
Baisakh, N., RamanaRao, M. V., Rajasekaran, K., Subudhi, P., Janda, J., Galbraith, D., Vanier, C., and Pereira, A. (2012). Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel. Plant Biotechnology Journal 10, 453–464.
| Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Loisel.Crossref | GoogleScholarGoogle Scholar | 22284568PubMed |
Baumel, A., Ainouche, M. L., Bayer, R. J., Ainouche, A. K., and Misset, M. T. (2002a). Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Molecular Phylogenetics and Evolution 22, 303–314.
| Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae).Crossref | GoogleScholarGoogle Scholar | 11820850PubMed |
Baumel, A., Ainouche, M., Kalendar, R., and Schulman, A. H. (2002b). Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae). Molecular Biology and Evolution 19, 1218–1227.
| Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae).Crossref | GoogleScholarGoogle Scholar | 12140233PubMed |
Baumel, A., Ainouche, M. L., Misset, M. T., Gourret, J. P., and Bayer, R. J. (2003). Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in south-west France: Spartina × neyrautii re-examined. Plant Systematics and Evolution 237, 87–97.
| Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in south-west France: Spartina × neyrautii re-examined.Crossref | GoogleScholarGoogle Scholar |
Bedre, R., Mangu, V. R., Srivastava, S., Sanchez, L. E., and Baisakh, N. (2016). Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel.), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genomics 17, 657.
| Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel.), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity.Crossref | GoogleScholarGoogle Scholar | 27542721PubMed |
Blum, M. J., Sloop, C. M., Ayres, D. R., and Strong, D. R. (2004). Characterization of microsatellite loci in Spartina species (Poaceae). Molecular Ecology Notes 4, 39–42.
| Characterization of microsatellite loci in Spartina species (Poaceae).Crossref | GoogleScholarGoogle Scholar |
Blum, M. J., Bando, K. J., Katz, M., and Strong, D. R. (2007). Geographic structure, genetic diversity and source tracking of Spartina alterniflora. Journal of Biogeography 34, 2055–2069.
| Geographic structure, genetic diversity and source tracking of Spartina alterniflora.Crossref | GoogleScholarGoogle Scholar |
Chelaifa, H., Mahe´, F., and Ainouche, M. (2010). Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae). Molecular Ecology 19, 2050–2063.
| Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae).Crossref | GoogleScholarGoogle Scholar | 20550634PubMed |
Chen, Q. K., Tian, Z. Y., Sha, W. F., Gu, Y. J., Dai, H., and Zhu, J. (2011). Exploration and innovation of distant hybridization germplasm of Oryza sativa × Spartina alterniflora in tideland. Anhui Nongye Kexue 39, 22251–22253.
Chiang, C. P., Yim, W. C., Sun, Y. H., Ohnishi, M., Mimura, T., Cushman, J. C., and Yen, H. E. (2016). Identification of ice plant (Mesembryanthemum crystallinum L.) microRNAs using RNA-Seq and their putative roles in high salinity responses in seedlings. Frontiers in Plant Science 7, 1143.
| Identification of ice plant (Mesembryanthemum crystallinum L.) microRNAs using RNA-Seq and their putative roles in high salinity responses in seedlings.Crossref | GoogleScholarGoogle Scholar | 27555850PubMed |
Daehler, C. C., and Strong, D. R. (1996). Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biological Conservation 78, 51–58.
| Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA.Crossref | GoogleScholarGoogle Scholar |
Deng, Z. F., An, S. Q., Zhou, C. F., Wang, Z. S., Zhi, Y. B., Wang, Y. J., Shi, S. H., Chen, L., and Zhao, C. J. (2007). Genetic structure and habitat selection of the tall form Spartina alterniflora Loisel. in China. Hydrobiologia 583, 195–204.
| Genetic structure and habitat selection of the tall form Spartina alterniflora Loisel. in China.Crossref | GoogleScholarGoogle Scholar |
Dlugosch, K. M., and Parker, I. M. (2008). Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17, 431–449.
| Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions.Crossref | GoogleScholarGoogle Scholar | 17908213PubMed |
Ellstrand, N. C., and Schierenbeck, K. A. (2000). Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences of the United States of America 97, 7043–7050.
| Hybridization as a stimulus for the evolution of invasiveness in plants?Crossref | GoogleScholarGoogle Scholar | 10860969PubMed |
Fonseca, D. M., LaPointe, D. A., and Fleischer, R. C. (2000). Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Molecular Ecology 9, 1803–1814.
| Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii.Crossref | GoogleScholarGoogle Scholar | 11091316PubMed |
Fortune, P. M., Schierenbeck, K., Ayres, D., Bortolus, A., Catrice, O., Brown, S., and Ainouche, M. L. (2008). The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Molecular Ecology 17, 4304–4316.
| The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context.Crossref | GoogleScholarGoogle Scholar | 18986503PubMed |
Frankham, R. (2005). Resolving the genetic paradox in invasive species. Heredity 94, 385.
| Resolving the genetic paradox in invasive species.Crossref | GoogleScholarGoogle Scholar | 15602569PubMed |
Gong, L., Li, J. S., Liu, X. Y., Zhao, X. J., Deng, Z. Z., and Zhao, C. Y. (2014). Genetic diversity of Spartina alterniflora in coastal areas of China. Caoye Kexue 31, 1290–1297.
| Genetic diversity of Spartina alterniflora in coastal areas of China.Crossref | GoogleScholarGoogle Scholar |
Goodisman, M. A. D., Matthews, R. W., and Crozier, R. H. (2001). Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Molecular Ecology 10, 1423–1432.
| Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia.Crossref | GoogleScholarGoogle Scholar |
Grevstad, F. S., Strong, D. R., Garcia-Rossi, D., Switzer, R. W., and Wecker, M. S. (2003). Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata: agent specificity and early results. Biological Control 27, 32–42.
| Biological control of Spartina alterniflora in Willapa Bay, Washington using the planthopper Prokelisia marginata: agent specificity and early results.Crossref | GoogleScholarGoogle Scholar |
Guo, W., Qiao, S., Wang, Y., Shi, S., Tan, F., and Huang, Y. (2017). Genetic diversity, population structure, and genetic relatedness of native and non-native population of Spartina alterniflora (Poaceae, Chloridoideae). Molecular Ecology 21, 2542–2551.
| Genetic diversity, population structure, and genetic relatedness of native and non-native population of Spartina alterniflora (Poaceae, Chloridoideae).Crossref | GoogleScholarGoogle Scholar |
Hendry, A. P., Wenburg, J. K., Bentzen, P., Volk, E. C., and Quinn, T. P. (2000). Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science 290, 516–518.
| Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon.Crossref | GoogleScholarGoogle Scholar | 11039932PubMed |
Hester, M. W., Mendelssohn, I. A., and McKee, K. L. (1998). Intraspecific variation in salt tolerance and morphology in Panicum hemitomon and Spartina alterniflore (Poaceae). International Journal of Plant Sciences 159, 127–138.
| Intraspecific variation in salt tolerance and morphology in Panicum hemitomon and Spartina alterniflore (Poaceae).Crossref | GoogleScholarGoogle Scholar |
Hundertmark, K. J., and Van Daele, L. J. (2010). Founder effect and bottleneck signatures in an introduced, insular population of elk. Conservation Genetics 11, 139–147.
| Founder effect and bottleneck signatures in an introduced, insular population of elk.Crossref | GoogleScholarGoogle Scholar |
Joshi, R., RamanaRao, M. V., Lee, S., Kato, N., and Baisakh, N. (2014). Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel.) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue and Organ Culture 117, 17–30.
| Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel.) confers drought and salt tolerance in transgenic rice and Arabidopsis.Crossref | GoogleScholarGoogle Scholar |
Krieger, M. J. B., and Ross, K. G. (2002). Identification of a major gene regulating complex social behavior. Science 295, 328–332.
| Identification of a major gene regulating complex social behavior.Crossref | GoogleScholarGoogle Scholar |
Lee, C. E. (2002). Evolutionary genetics of invasive species. Trends in Ecology & Evolution 17, 386–391.
| Evolutionary genetics of invasive species.Crossref | GoogleScholarGoogle Scholar |
Liu, J. H., Xiong, X. C., Pan, Y. C., Yang, L. Y., and Li, X. J. (2011). Research progress of Bactrocera dorsalis and its species complex. Agricultural Science and Technology 121, 1657–1661.
| Research progress of Bactrocera dorsalis and its species complex.Crossref | GoogleScholarGoogle Scholar |
Majee, M., Maitra, S., Dastidar, K. G., Pattnaik, S., Chatterjee, A., Hait, N. C., Das, K. P., and Majumder, A. L. (2004). A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice. The Journal of Biological Chemistry 279, 28539–28552.
| A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice.Crossref | GoogleScholarGoogle Scholar | 15016817PubMed |
Marchant, C. (1968). Evolution in Spartina (Gramineae). II. chromosomes, basic relationships and the problem of Spartina townsendii agg. Journal of the Linnean Society (Botany) 60, 381–409.
| Evolution in Spartina (Gramineae). II. chromosomes, basic relationships and the problem of Spartina townsendii agg.Crossref | GoogleScholarGoogle Scholar |
O’Brien, D. L., and Freshwater, D. W. (1999). Genetic diversity within tall forms Spartina alterniflore Loisel. along the Atlantic and Gulf coast of the United States. Wetlands 19, 12–15.
| Genetic diversity within tall forms Spartina alterniflore Loisel. along the Atlantic and Gulf coast of the United States.Crossref | GoogleScholarGoogle Scholar |
Partridge, T. R. (1987). Spartina in New Zealand. New Zealand Journal of Botany 25, 567–575.
| Spartina in New Zealand.Crossref | GoogleScholarGoogle Scholar |
Perkins, E. J., Streever, W. J., Davis, E., and Fredickson, H. L. (2002). Development of amplified fragment length polymorphism marshes for Spartina alterniflora. Aquatic Botany 74, 85–95.
| Development of amplified fragment length polymorphism marshes for Spartina alterniflora.Crossref | GoogleScholarGoogle Scholar |
Pianaro, A., Flach, A., Patricio, E. F., Nogueira-Neto, P., and Marsaioli, A. J. (2007). Chemical changes associated with the invasion of a Melipona scutellaris colony by Melipona rufiventris workers. Journal of Chemical Ecology 33, 971–984.
| Chemical changes associated with the invasion of a Melipona scutellaris colony by Melipona rufiventris workers.Crossref | GoogleScholarGoogle Scholar | 17404819PubMed |
Porter, S. D., and Savignano, D. A. (1990). Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71, 2095–2106.
| Invasion of polygyne fire ants decimates native ants and disrupts arthropod community.Crossref | GoogleScholarGoogle Scholar |
Prentis, P. J., Sigg, D. P., Raghu, S., Dhileepan, K., Pavasovic, A., and Lowe, A. J. (2009). Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management. Diversity & Distributions 15, 822–830.
| Understanding invasion history: genetic structure and diversity of two globally invasive plants and implications for their management.Crossref | GoogleScholarGoogle Scholar |
Qiao, H. M., Liu, W. W., Zhang, Y. H., and Zhang, Y. Y. (2019). Genetic admixture accelerates invasion via provisioning rapid adaptive evolution. Molecular Ecology 28, 4012–4027.
| Genetic admixture accelerates invasion via provisioning rapid adaptive evolution.Crossref | GoogleScholarGoogle Scholar |
Qin, P., Jin, M., Zhang, Z. R., and Xie, M. (1985). Seed germination experiments of three ecotypes of Spartina alterniflora. Journal of Nanjing University — Natural Science 21, 237–246.
RamanaRao, M. V., Weindorf, D., Breitenbeck, G., and Baisakh, N. (2012). Differential expression of the transcripts of Spartina alterniflora Loisel. (smooth cordgrass) induced in response to petroleum hydrocarbon. Molecular Biotechnology 51, 18–26.
| Differential expression of the transcripts of Spartina alterniflora Loisel. (smooth cordgrass) induced in response to petroleum hydrocarbon.Crossref | GoogleScholarGoogle Scholar | 21732077PubMed |
Russell, J. G., Abdelkrim, J., and Fewster, R. M. (2009). Early colonisation population structure of a Norway rat island invasion. Biological Invasions 11, 1557–1567.
| Early colonisation population structure of a Norway rat island invasion.Crossref | GoogleScholarGoogle Scholar |
Saltonstall, K. (2002). Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America 99, 2445–2449.
| Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America.Crossref | GoogleScholarGoogle Scholar | 11854535PubMed |
Sax, D. F., Stachowicz, J. J., Brown, J. H., Bruno, J. F., Dawson, M. N., Gaines, S. D., Grosberg, R. K., Hastings, A., Holt, R. D., Mayfield, M. M., Connor, M. I., and Rice, W. R. (2007). Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution 22, 465–471.
| Ecological and evolutionary insights from species invasions.Crossref | GoogleScholarGoogle Scholar |
Sengupta, S., Mangu, V., Sanchez, L., Bedre, R., Joshi, R., Rajasekaran, K., and Baisakh, N. (2019). An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice. Plant Biotechnology Journal 17, 188–205.
| An actin-depolymerizing factor from the halophyte smooth cordgrass, Spartina alterniflora (SaADF2), is superior to its rice homolog (OsADF2) in conferring drought and salt tolerance when constitutively overexpressed in rice.Crossref | GoogleScholarGoogle Scholar | 29851294PubMed |
Sloop, C. M., McGray, H. G., Blum, M. J., and Strong, D. R. (2005). Characterization of 24 additional microsatellite loci in Spartina Species (Poaceae). Conservation Genetics 6, 1049–1052.
| Characterization of 24 additional microsatellite loci in Spartina Species (Poaceae).Crossref | GoogleScholarGoogle Scholar |
Stiller, J. W., and Denton, A. L. (1995). 100 years of Spartina alterniflora (Poaceae) in Willapa Bay, Washington: random amplified polymorphic DNA analysis of an invasive population. Molecular Ecology 4, 355–364.
| 100 years of Spartina alterniflora (Poaceae) in Willapa Bay, Washington: random amplified polymorphic DNA analysis of an invasive population.Crossref | GoogleScholarGoogle Scholar |
Travis, S. E., and Hester, M. W. (2005). A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. Journal of Ecology 93, 417–430.
| A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years.Crossref | GoogleScholarGoogle Scholar |
Travis, S. E., Proffitt, C. E., Lowenfeld, R. C., and Mitchell, T. W. (2002). A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands. Restoration Ecology 10, 37–42.
| A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands.Crossref | GoogleScholarGoogle Scholar |
Travis, S. E., Proffitt, C. E., and Ritland, K. (2004). Population structure and inbreeding vary with successional stage in created Spartina alterniflora marshes. Ecological Applications 14, 1189–1202.
| Population structure and inbreeding vary with successional stage in created Spartina alterniflora marshes.Crossref | GoogleScholarGoogle Scholar |
Tsukagoshi, H., Suzuki, T., Nishikawa, K., Agarie, S., Ishiguro, S., and Higashiyama, T. (2015). RNA-Seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity. PLoS One 10, e0118339.
| RNA-Seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity.Crossref | GoogleScholarGoogle Scholar | 25706745PubMed |
Tsutsui, N. D., and Case, T. J. (2001). Population genetics and colony structure of the argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55, 976–985.
| Population genetics and colony structure of the argentine ant (Linepithema humile) in its native and introduced ranges.Crossref | GoogleScholarGoogle Scholar | 11430657PubMed |
Utomo, H. S., Wenefrida, L., Materne, M., and Harrison, S. H. (2009). Genetic diversity and population genetic structure of salt marsh Spartina alterniflora from four coastal Louisiana basins. Aquatic Botany 90, 30–36.
| Genetic diversity and population genetic structure of salt marsh Spartina alterniflora from four coastal Louisiana basins.Crossref | GoogleScholarGoogle Scholar |
Wan, X. W., Liu, Y. H., Luo, L. M., Feng, C. H., Wang, S., and Ma, L. (2015). Inference on the invasion history of invasive alien species based on molecular methods. Acta Ecologica Sinica 35, 1296–1309.
Wu, J. Z., Wang, Q., and Chen, J. Q. (2011). Genetic structure of Spartina alterniflora population in China based on EH277045-derived sequence. Anhui Nongye Kexue 39, 22220–22223.
Wu, J. Z., Wang, Q., Zhong, X. X., and Chen, J. Q. (2012a). Analysis of the genetic structure of Spartina alterniflora populations in China based on cpDNA trnT–trnF sequences. Caoye Xuebao 21, 134–140.
Wu, H. J., Zhang, Z. H., Wang, J. Y., Oh, D. H., Dassanayake, M., Liu, B. H., Huang, Q. F., Sun, H. X., Xia, R., Wu, Y. R., Wang, Y. N., Yang, Z., Liu, Y., Zhang, W. K., Zhang, H. W., Chu, J. F., Yan, C. Y., Fang, S., Zhang, J. S., Wang, Y. Q., Zhang, F. X., Wang, G. D., Lee, S. Y., Cheeseman, J. M., Yang, B. C., Li, B., Min, J. M., Yang, L. F., Wang, J., Chu, C. C., Chen, S. Y., Bohnert, H. J., Zhu, J. K., Wang, X. J., and Xie, Q. (2012b). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America 109, 12219–12224.
| Insights into salt tolerance from the genome of Thellungiella salsuginea.Crossref | GoogleScholarGoogle Scholar | 22778405PubMed |
Xia, L., Zhao, H., Yang, W., and An, S. Q. (2015). Genetic diversity, ecotype hybrid and mixture of invasive Spartina alterniflora Loisel. in coastal China. Clean – Soil Air Water 43, 1672–1681.
| Genetic diversity, ecotype hybrid and mixture of invasive Spartina alterniflora Loisel. in coastal China.Crossref | GoogleScholarGoogle Scholar |
Xu, G. W., and Zhuo, R. Z. (1985). Preliminary studies of introduced Spartina alterniflora Loisel. in China. Journal of Nanjing University – Natural Science 1985, 212–225.
Xu, L., Yi, H. B., Zhang, X., Cao, X. L., Lu, N. N., Yan, L. H., Chen, S. H., and Guo, S. L. (2016). cDNA clone, sequence information and expression analysis of NHX1 gene of S. alterniflore. Jiangsu Agricultural Sciences 44, 34–38.
| cDNA clone, sequence information and expression analysis of NHX1 gene of S. alterniflore.Crossref | GoogleScholarGoogle Scholar |
Zhu, J. K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiology 124, 941–948.
| Genetic analysis of plant salt tolerance using Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 11080272PubMed |