Walking, swimming or hitching a ride? Phylogenetics and biogeography of the walking shark genus Hemiscyllium
Christine L. Dudgeon A H , Shannon Corrigan B , Lei Yang B , Gerry R. Allen C , Mark V. Erdmann D E ,A The University of Queensland, School of Biomedical Sciences, Saint Lucia, Qld, 4072 Australia.
B Florida Museum of Natural History, Dickinson Hall, 1659 Museum Road, University of Florida, Gainesville, FL 32611, USA.
C Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Perth, WA 6986, Australia.
D Conservation International Indonesia Marine Program, Jalan Dr Muwardi 17, Renon, Denpasar 80235, Indonesia.
E California Academy of Sciences, Golden Gate Park, San Francisco, CA 94118, USA.
F Research Centre for Oceanography, Indonesian Institute of Sciences (P2O LIPI), Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia.
G CSIRO Australian National Fish Collection, National Research Collections Australia, GPO Box 1538, Hobart, Tas. 7000, Australia.
H Corresponding author. Email: c.dudgeon@uq.edu.au
Marine and Freshwater Research 71(9) 1107-1117 https://doi.org/10.1071/MF19163
Submitted: 7 May 2019 Accepted: 28 October 2019 Published: 21 January 2020
Abstract
It can be challenging to identify the forces that drive speciation in marine environments for organisms that are capable of widespread dispersal because their contemporary distributions often belie the historical processes that were responsible for their initial diversification. In this contribution we explore the likely sequence of events responsible for the radiation of walking sharks in the genus Hemiscyllium using a dated molecular phylogeny. The nine currently recognised species in the genus consist of small, benthic sharks that are restricted to the Indo-Australian Archipelago and show limited dispersal at both juvenile and adult stages. We discuss how major tectonic changes, sea level fluctuations and the unique biology of the species may have influenced speciation in the group, as well as the current distribution of the genus and each of its constituent species. Phylogeographic analysis of the genus combined with biogeographic reconstruction of the region shows a recent radiation during the Miocene and Pliocene, and supports a combination of vicariance and founder modes of speciation mediated by major tectonic, geological and oceanographic historical processes.
Additional keywords: Australia, eastern Indonesia, epaulette shark, New Guinea, radiation, Sahul region.
References
Adolfssen, J. S., and Ward, D. J. (2014). Crossing the boundary: an elasmobranch fauna from Stevns Klint, Denmark. Palaeontology 57, 591–629.| Crossing the boundary: an elasmobranch fauna from Stevns Klint, Denmark.Crossref | GoogleScholarGoogle Scholar |
Allen, G. R., and Dudgeon, C. L. (2010). Hemiscyllium michaeli, a new species of bamboo shark (Hemiscyllidae) from Papua New Guinea. Aqua – International Journal of Ichthyology 16, 19–30.
Allen, G. R., and Erdmann, M. V. (2008). Two new species of bamboo sharks (Orectolobiformes: Hemiscyllidae) from western New Guinea. Aqua – International Journal of Ichthyology 13, 93–108.
Allen, G. R., Erdmann, M. V., and Dudgeon, C. L. (2013). Hemiscyllium halmahera, a new species of bamboo shark (Hemicyllidae) from Indonesia. Aqua – International Journal of Ichthyology 19, 123–136.
Allen, G. R., Hadiaty, R. H., Unmack, P. J., and Erdmann, M. V. (2015). Rainbowfishes (Melanotaeniidae) of the Aru Islands, Indonesia with descriptions of five new species and redescription of M. patoti Weber and M. senckenbergianus Weber. Aqua – International Journal of Ichthyology 21, 66–108.
Allen, G. R., Erdmann, M. V., White, W. T., Fahmi, , and Dudgeon, C. L. (2016). Review of the bamboo shark genus Hemiscyllidae (Orectolobiformes: Hemiscyllidae). Journal of the Ocean Science Foundation 23, 51–97.
Barber, P. H. (2009). The challenge of understanding the Coral Triangle biodiversity hotspot. Journal of Biogeography 36, 1845–1846.
| The challenge of understanding the Coral Triangle biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |
Barraclough, T. G., and Nee, S. (2001). Phylogenetics and speciation. Trends in Ecology & Evolution 16, 391–399.
| Phylogenetics and speciation.Crossref | GoogleScholarGoogle Scholar |
Cappetta, H. (1980). Les Sélaciens du Crétacé supérieur du Liban. I. Requins. Palaeontographica. Abteilung A, Paläozoologie, Stratigraphie 168, 69–148.
Carter, R. M., and Johnson, D. P. (1986). Sea-level controls on the post-glacial development of the Great Barrier Reef, Queensland. Marine Geology 71, 137–164.
| Sea-level controls on the post-glacial development of the Great Barrier Reef, Queensland.Crossref | GoogleScholarGoogle Scholar |
Compagno, L. J. V. (Ed.) (2001). ‘Sharks of the World. An Annotated and Illustrated Catalogue of Shark Species Known to Date. Volume 2. Bullhead, Mackerel and Carpet Sharks (Heterodontiformes, Lamniformes and Orectolobiformes).’ (FAO: Rome, Italy.)
Compagno, L. J. V., Dando, M., and Fowler, S. (2005). ‘A Field Guide to the Sharks of the World.’ (Harper Collins Publishers: London, UK)
Coyne, J. A., and Orr, H. A. (2004). ‘Speciation.’ (Sinauer: Sunderland, MA, USA.)
de Jong, R. (1998). Halmahera and Seram: different histories, but similar butterfly faunas. In ‘Biogeography and Geological Evolution of SE Asia’. (Eds R. Hall and J. D. Holloway.) pp. 315–325. (Backhuys Publishers: Leiden, Netherlands)
Dingerkus, G., and DeFino, T. C. (1983). A revision of the Orectolobiform shark family Hemscyllidae (Chondricthyes, Selachii). Bulletin of the American Museum of Natural History 176, 1–93.
Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
| BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |
Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973.
| Bayesian phylogenetics with BEAUti and the BEAST 1.7.Crossref | GoogleScholarGoogle Scholar | 22367748PubMed |
Fisher, S., Barry, A., Abreu, J., Minie, B., Nolan, J., Delorey, T. M., Young, G., Fennell, T. J., Allen, A., Ambrogio, L., Berlin, A. M., Blumenstiel, B., Cibulskis, K., Friedrich, D., Johnson, R., Juhn, F., Reilly, B., Shammas, R., Stalker, J., Skykes, S. M., Thompson, J., Walsh, J., Zimmer, A., Zwirko, Z., Gabriel, S., Nicol, R., and Nusbaum, C. (2011). A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biology 12, R1.
| A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries.Crossref | GoogleScholarGoogle Scholar | 21205303PubMed |
Hall, R. (1998). The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In ‘Biogeography and Geological Evolution of SE Asia’. (Eds R. Hall and J. D. Holloway.) pp. 99–131. (Backhuys Publishers: Leiden, Netherlands)
Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353–431.
| Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations.Crossref | GoogleScholarGoogle Scholar |
Hall, R. (2009). Southeast Asia’s changing palaeogeography. Blumea 54, 148–161.
| Southeast Asia’s changing palaeogeography.Crossref | GoogleScholarGoogle Scholar |
Heist, E. J. (2004). Genetics of sharks, skates and rays. In ‘Biology of Sharks and their Relatives’, 2nd edn. (Eds J. C. Carrier, J. A. Musick, and M. R. Heithaus.) pp. 487–504. (CRC Press: Boca Raton, FL, USA.)
Hill, K. C., and Hall, R. (2003). Mesozoic–Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context. Geological Society of Australia Special Paper 372, 265–290.
| Mesozoic–Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context.Crossref | GoogleScholarGoogle Scholar |
Irestedt, M., Jønsson, K. A., Fjeldså, J., Christidis, L., and Ericson, P. G. P. (2009). An unexpectedly long history of sexual selection in birds-of-paradise. BMC Evolutionary Biology 9, 235–246.
| An unexpectedly long history of sexual selection in birds-of-paradise.Crossref | GoogleScholarGoogle Scholar | 19758445PubMed |
Kriwet, J., and Benton, M. J. (2004). Neoselachian (Chondricthyes, Elasmobranchii) diversity across the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214, 181–194.
| Neoselachian (Chondricthyes, Elasmobranchii) diversity across the Cretaceous–Tertiary boundary.Crossref | GoogleScholarGoogle Scholar |
Last, P. R., and Stevens, J. D. (2009). ‘Sharks and Rays of Australia.’ (CSIRO Publishing: Melbourne, Vic., Australia)
Li, C., Hofreiter, M., Straube, N., Corrigan, S., and Naylor, G. J. P. (2013). Capturing protein-coding genes across highly divergent species. BioTechniques 54, 321–326.
| Capturing protein-coding genes across highly divergent species.Crossref | GoogleScholarGoogle Scholar | 23758502PubMed |
Lukoschek, V., Waycott, M., and Marsh, H. (2007). Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow. Molecular Ecology 16, 3406–3422.
| Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expansion around northern Australia but low contemporary gene flow.Crossref | GoogleScholarGoogle Scholar | 17688542PubMed |
Mayr, E. (1944). Wallace’s line in the light of recent zoogeographic studies. The Quarterly Review of Biology 19, 1–14.
| Wallace’s line in the light of recent zoogeographic studies.Crossref | GoogleScholarGoogle Scholar |
Meyer, M., and Kircher, M. (2010). Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols 2010(6), pdb.prot5448
Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the 2010 Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC Accession Number 11705685, pp. 1–8. (Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA)
Nosil, P., Harmon, L. J., and Seehausen, O. (2009). Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution 24, 145–156.
| Ecological explanations for (incomplete) speciation.Crossref | GoogleScholarGoogle Scholar |
Pandolfi, J. M. (1993). A review of the tectonic history of New Guinea and its significance for marine biogeography. In ‘7th International Coral Reef Symposium’, 22–27 June 1992, Guam. (Ed. R. H. Richmond.) pp. 718–728. (University of Guam Press: Guam.)
Pigram, C. J., and Davies, H. L. (1987). Terranes and the accretion history of the New Guinea orogen. BMR Journal of Australian Geology and Geophysics 10, 193–211.
Polhemus, D. A., and Polhemus, J. T. (1998). Assembling New Guinea: 40 million years of island arc accretion as indicated by the distributions of aquatic Heteroptera (Insecta). In ‘Biogeography and Geological Evolution of SE Asia’. (Eds R. Hall and J. D. Holloway.) pp. 327–340. (Backhuys Publishers: Leiden, Netherlands)
Pollerspöck, J., and Beaury, B. (2014). Parasquatina zitteli nov. sp. (Elasmobranchii: Orectolobiformes) aus dem Maastricht von Oberbayern (Gerhartsreiter Schichten, Siegsdorf) und Bemerkungen zur Verbreitung der Ordnung Orectolobiforme. Zitteliana A 54, 147–164.
Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., Lunt, P., Meyer, C. P., McMonagle, L. B., Morrley, R. J., O’Dea, A., Todd, J. A., Wesselingh, F. P., Wilson, M. E. J., and Pandolfi, J. M. (2008). Hopping hotspots: global shifts in marine biodiversity. Science 321, 654–657.
| Hopping hotspots: global shifts in marine biodiversity.Crossref | GoogleScholarGoogle Scholar | 18669854PubMed |
Rosser, N. L. (2016). Demographic history and asynchronous spawning shape genetic differentiation among populations of the hard coral Acropora tenuis in Western Australia. Molecular Phylogenetics and Evolution 98, 89–96.
| Demographic history and asynchronous spawning shape genetic differentiation among populations of the hard coral Acropora tenuis in Western Australia.Crossref | GoogleScholarGoogle Scholar | 26876640PubMed |
Siverson, M. (1997). Sharks from the mid-Cretaceous Gearle Siltstone, southern Carnarvon Basin, Western Australia. Journal of Vertebrate Paleontology 17, 453–465.
| Sharks from the mid-Cretaceous Gearle Siltstone, southern Carnarvon Basin, Western Australia.Crossref | GoogleScholarGoogle Scholar |
Skeels, A., and Cardillo, M. (2019). Reconstructing the geography of speciation from contemporary biodiversity data. American Naturalist 193, 240–255.
| Reconstructing the geography of speciation from contemporary biodiversity data.Crossref | GoogleScholarGoogle Scholar | 30720363PubMed |
Swofford, D. L. (2002). ‘PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods)’, v4.0a148 edn. (Sinauer Associates: Sunderland, MA, USA.)
Turelli, M., Barton, N. H., and Coyne, J. A. (2001). Theory and speciation. Trends in Ecology & Evolution 16, 330–343.
| Theory and speciation.Crossref | GoogleScholarGoogle Scholar |
van Oppen, M. J. H., Peplow, L. M., Kininmonth, S., and Berkelmans, R. (2011). Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, Acropora millepora, on the Great Barrier Reef. Molecular Ecology 20, 4899–4914.
| Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, Acropora millepora, on the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |
Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27, 1153–1167.
| Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations.Crossref | GoogleScholarGoogle Scholar |
Webster, J. M., Braga, J. C., Humblet, M., Potts, D. C., Iryu, Y., Yokoyama, Y., Fujita, K., Bourillot, R., Esat, T. M., Fallon, S., Thompson, W. G., Thomas, A. L., Kan, H., McGregor, H. V., Hinestrosa, G., Obrochta, S. P., and Lougheed, B. C. (2018). Response of the Great Barrier Reef to sea-level and environmental changes over the past 30 000 years. Nature Geoscience 11, 426–432.
| Response of the Great Barrier Reef to sea-level and environmental changes over the past 30 000 years.Crossref | GoogleScholarGoogle Scholar |
Weigmann, S. (2016). Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity. Journal of Fish Biology 88, 837–1037.
| Annotated checklist of the living sharks, batoids and chimaeras (Chondrichthyes) of the world, with a focus on biogeographical diversity.Crossref | GoogleScholarGoogle Scholar | 26860638PubMed |
Wilson, B. (2013). Patterns of life and the processes that produce them. In ‘The Biogeography of the Australian North West Shelf: Environmental Change and Life’s Response’. (Ed. B. Wilson.) pp. 267–369. (Elsevier: Amsterdam, Netherlands.)
Wise, G., Mulvey, J. M., and Renshaw, G. M. C. (1998). Hypoxia tolerance in the epaulette shark (Hemiscyllium ocellatum). Journal of Zoology 218, 1–5.
Wörheide, G., Hooper, J. N. A., and Degnan, B. M. (2002). Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Molecular Ecology 11, 1753–1768.
| Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia).Crossref | GoogleScholarGoogle Scholar | 12207725PubMed |
Yokoyama, Y., Purcell, A., Lambeck, K., and Johnston, P. (2001). Shore-line reconstruction around Australia during the Last Glacial Maximum and Late Glacial Stage. Quaternary International 83–85, 9–18.
| Shore-line reconstruction around Australia during the Last Glacial Maximum and Late Glacial Stage.Crossref | GoogleScholarGoogle Scholar |