Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Thermal adaptation of Japanese sand lance (Ammodytes personatus) in different ocean currents revealed by the cytochrome-b gene

Zhaochao Deng A , Shengyong Xu A B , Tianxiang Gao A and Zhiqiang Han A C
+ Author Affiliations
- Author Affiliations

A Fishery College, Zhejiang Ocean University, 1 Haida South Road, Zhoushan, Zhejiang, 316002, PR China.

B Fishery College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, PR China.

C Corresponding author. Email: d6339124@163.com

Marine and Freshwater Research 70(10) 1484-1491 https://doi.org/10.1071/MF18473
Submitted: 18 September 2018  Accepted: 28 January 2019   Published: 12 April 2019

Abstract

To assess the possible thermal selection on mitochondrial coding genes in cold water species, we explored the population structure of Japanese sand lance (Ammodytes personatus) and performed selection tests on the mitochondrial cytochrome-b gene of species, using 174 individuals from eight different sea temperature populations in different ocean currents. Two distinct haplotype lineages were present in this species, and the lineage frequencies varied with changes in sea temperature. The selection tests showed that A. personatus was subject to purifying selection. Populations living in cold climates had a considerably smaller non-synonymous substitution rate/synonymous substitution rate (dN/dS) than those in temperate areas. The efficiency of the electron transfer chain system may be affected by amino acid changes at codons 353 and 371. These findings provide new evidence that temperature may affect the contemporary distribution of mitochondrial DNA clade frequencies in A. personatus.

Additional keywords : purifying selection, sea temperature.


References

Al-Shemmeri, T. (Ed.) (2012). Fluid properties. In ‘Engineering Fluid Mechanics’. pp. 15–18. (Ventus Publishing ApS: London, UK.)

Almeida, D., Maldonado, E., Vasconcelos, V., and Antunes, A. (2015). Adaptation of the mitochondrial genome in cephalopods: enhancing proton translocation channels and the subunit interactions. PLoS One 10, e0135405.
Adaptation of the mitochondrial genome in cephalopods: enhancing proton translocation channels and the subunit interactions.Crossref | GoogleScholarGoogle Scholar | 26285039PubMed |

Ballard, J. W., and Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology 13, 729–744.
The incomplete natural history of mitochondria.Crossref | GoogleScholarGoogle Scholar | 15012752PubMed |

Ben-Tuvia, A. (2013). Influence of temperature on the vertebral number of Sardinella aurita from the eastern Mediterranean. Israel Journal of Zoology 12, 59–66.
Influence of temperature on the vertebral number of Sardinella aurita from the eastern Mediterranean.Crossref | GoogleScholarGoogle Scholar |

da Fonseca, R. R., Johnson, W. E., O’Brien, S. J., Ramos, M. J., and Agostinho, A. (2008). The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9, 119.
The adaptive evolution of the mammalian mitochondrial genome.Crossref | GoogleScholarGoogle Scholar | 18318906PubMed |

Delano, W. L. (2002). ‘PyMOL: an Open-Source Molecular Graphics Tool.’ (DeLano Scientific: San Carlos, CA, USA.)

Delport, W., Poon, A. F. Y., Frost, S. D. W., and Kosakovsky Pond, S. L. (2010). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26, 2455–2457.
Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology.Crossref | GoogleScholarGoogle Scholar | 20671151PubMed |

di Rago, J., Hermann-Le, D. S., Pâques, F., Risler, F. P., Netter, P., and Slonimski, P. P. (1995). Genetic analysis of the folded structure of yeast mitochondrial cytochrome b by selection of intragenic second-site revertants. Journal of Molecular Biology 248, 804–811.
Genetic analysis of the folded structure of yeast mitochondrial cytochrome b by selection of intragenic second-site revertants.Crossref | GoogleScholarGoogle Scholar | 7752241PubMed |

Dowling, D. K., Friberg, U., and Lindell, J. (2008). Evolutionary implications of non-neutral mitochondrial genetic variation. Trends in Ecology & Evolution 23, 546–554.
Evolutionary implications of non-neutral mitochondrial genetic variation.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In ‘The Proteomics Protocols Handbook’. (Ed. J. M. Walker.) pp. 571–607. (Humana Press: Totowa, NJ, USA.)10.1385/1-59259-890-0:571

Grant, W. S., Spies, I. B., and Canino, M. F. (2006). Biogeographic evidence for selection on mitochondrial DNA in north Pacific walleye pollock Theragra chalcogramma. The Journal of Heredity 97, 571–580.
Biogeographic evidence for selection on mitochondrial DNA in north Pacific walleye pollock Theragra chalcogramma.Crossref | GoogleScholarGoogle Scholar | 17038421PubMed |

Hamada, T. (1985). Aestivation. In ‘Fishery Biology of the Sand-Lance (Ammodytes personatus Girard) in Japan’. (Ed. T. Hamada.) pp. 34–39. (Japan Fisheries Resource Conservation Association: Tokyo, Japan.) [In Japanese].

Han, Z. Q., Yanagimoto, T., Zhang, Y. P., and Gao, T. X. (2012). Phylogeography study of Ammodytes personatus in northwestern pacific: Pleistocene isolation, temperature and current conducted secondary contact. PLoS One 7, e37425.
Phylogeography study of Ammodytes personatus in northwestern pacific: Pleistocene isolation, temperature and current conducted secondary contact.Crossref | GoogleScholarGoogle Scholar |

Han, Z. Q., Wang, Z. Y., Gao, T. X., Yanagimoto, T., and Iida, K. (2018). Assessing the speciation of a cold water species, Japanese sand lance Ammodytes personatus, in the northwestern Pacific by AFLP markers. Animals (Basel) 8, 224.
Assessing the speciation of a cold water species, Japanese sand lance Ammodytes personatus, in the northwestern Pacific by AFLP markers.Crossref | GoogleScholarGoogle Scholar |

Haney, R. A., Silliman, B. R., and Rand, D. M. (2010). Effects of selection and mutation on mitochondrial variation and inferences of historical population expansion in a Caribbean reef fish. Molecular Phylogenetics and Evolution 57, 821–828.
Effects of selection and mutation on mitochondrial variation and inferences of historical population expansion in a Caribbean reef fish.Crossref | GoogleScholarGoogle Scholar | 20688179PubMed |

Hatanaka, M., and Okamoto, R. (1949). Studies on populations of the Japanese sand lance (Ammodytes personatus Girard). Tohoku Journal of Agricultural Research 1, 57–67.

Hofmann, K., and Stoffel, W. (1993). TMbase – a database of membrane spanning proteins segments. Biological Chemistry Hoppe-Seyler 374, 166.
TMbase – a database of membrane spanning proteins segments.Crossref | GoogleScholarGoogle Scholar |

Jacobsen, M. W., da Fonseca, R. R., Bernatchez, L., and Hansen, M. M. (2016). Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus spp.). Molecular Phylogenetics and Evolution 95, 161–170.
Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus spp.).Crossref | GoogleScholarGoogle Scholar | 26654959PubMed |

Korsloot, A., Gestel, C. A., and Straalen, N. M. (2004). The oxidative stress response system. In ‘Environmental Stress and Cellular Response in Arthropods’. (Ed. A. Korsloot.) pp. 59–67. (CRC Press: Boca Raton, FL, USA.)

Kosakovsky Pond, S. L., and Frost, S. D. W. (2005). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution 22, 1208–1222.
Not so different after all: a comparison of methods for detecting amino acid sites under selection.Crossref | GoogleScholarGoogle Scholar | 15703242PubMed |

Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H., and Frost, S. D. W. (2006). GARD: a genetic algorithm for recombination detection. Bioinformatics 22, 3096–3098.
GARD: a genetic algorithm for recombination detection.Crossref | GoogleScholarGoogle Scholar | 17110367PubMed |

Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J., and Renault, D. (2011). Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 158, 229–234.
Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations.Crossref | GoogleScholarGoogle Scholar |

Luo, S., and Levine, R. L. (2009). Methionine in proteins defends against oxidative stress. The FASEB Journal 23, 464–472.
Methionine in proteins defends against oxidative stress.Crossref | GoogleScholarGoogle Scholar | 18845767PubMed |

McClellan, D. A., and McCracken, K. G. (2001). Estimating the influence of selection on the variable amino acid sites of the cytochrome-b protein functional domains. Molecular Biology and Evolution 18, 917–925.
Estimating the influence of selection on the variable amino acid sites of the cytochrome-b protein functional domains.Crossref | GoogleScholarGoogle Scholar | 11371579PubMed |

Meiklejohn, C. D., Montooth, K. L., and Rand, D. M. (2007). Positive and negative selection on the mitochondrial genome. Trends in Genetics 23, 259–263.
Positive and negative selection on the mitochondrial genome.Crossref | GoogleScholarGoogle Scholar | 17418445PubMed |

Murrell, B., Wertheim, J. O., Moola, S., Weighill, T., Scheffler, K., and Kosakovsky Pond, S. L. (2012). Detecting individual sites subject to episodic diversifying selection. PLOS Genetics 8, e1002764.
Detecting individual sites subject to episodic diversifying selection.Crossref | GoogleScholarGoogle Scholar | 22807683PubMed |

Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., and Scheffler, K. (2013). FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Molecular Biology and Evolution 30, 1196–1205.
FUBAR: a fast, unconstrained Bayesian approximation for inferring selection.Crossref | GoogleScholarGoogle Scholar | 23420840PubMed |

Oba, T., Irino, T., Yamamoto, M., Murayama, M., Takamura, A., and Aoki, K. (2006). Paleoceanographic change off central Japan since the last 144,000 years based on high-resolution oxygen and carbon isotope records. Global and Planetary Change 53, 5–20.
Paleoceanographic change off central Japan since the last 144,000 years based on high-resolution oxygen and carbon isotope records.Crossref | GoogleScholarGoogle Scholar |

Reimchen, T. E., and Cox, K. D. (2016). Differential temperature preferences of vertebral phenotypes in Gasterosteus. Canadian Journal of Zoology 94, 1–5.
Differential temperature preferences of vertebral phenotypes in Gasterosteus.Crossref | GoogleScholarGoogle Scholar |

Rottenberg, H. (2007). Exceptional longevity in songbirds is associated with high rates of evolution of cytochrome b, suggesting selection for reduced generation of free radicals. The Journal of Experimental Biology 210, 2170–2180.
Exceptional longevity in songbirds is associated with high rates of evolution of cytochrome b, suggesting selection for reduced generation of free radicals.Crossref | GoogleScholarGoogle Scholar | 17562891PubMed |

Sambrook, J., Fritsch, E. F., and Maniatis, T. (1982). ‘Molecular Cloning: a Laboratory Manual.’ (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA.)

Santos, S., Hrbek, T., Farias, I. P., Schneider, H., and Sampaio, I. (2006). Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change. Molecular Ecology 15, 4361–4373.
Population genetic structuring of the king weakfish, Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep genetic divergence without morphological change.Crossref | GoogleScholarGoogle Scholar | 17107470PubMed |

Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003). Swiss-model: an automated protein homology-modeling server. Nucleic Acids Research 31, 3381–3385.
Swiss-model: an automated protein homology-modeling server.Crossref | GoogleScholarGoogle Scholar | 12824332PubMed |

Silva, G., Lima, F. P., Martel, P., and Castilho, R. (2014). Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20141093.
Thermal adaptation and clinal mitochondrial DNA variation of European anchovy.Crossref | GoogleScholarGoogle Scholar |

Sun, Y. B., Shen, Y. Y., Irwin, D. M., and Zhang, Y. P. (2011). Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution. Molecular Biology and Evolution 28, 39–44.
Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution.Crossref | GoogleScholarGoogle Scholar | 20924083PubMed |

Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10, 512–526.
Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.Crossref | GoogleScholarGoogle Scholar | 8336541PubMed |

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 21546353PubMed |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). Mega6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
Mega6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 24132122PubMed |

Tester, A. L. (1938). Variation in the mean vertebral count of herring (Clupea pallasii) with water temperature. ICES Journal of Marine Science 13, 71–75.
Variation in the mean vertebral count of herring (Clupea pallasii) with water temperature.Crossref | GoogleScholarGoogle Scholar |

Tomiyama, M., and Yanagibashi, S. (2004). Effect of temperature, age class, and growth on induction of aestivation in Japanese sandeel (Ammodytes personatus) in Ise Bay, central Japan. Fisheries Oceanography 13, 81–90.
Effect of temperature, age class, and growth on induction of aestivation in Japanese sandeel (Ammodytes personatus) in Ise Bay, central Japan.Crossref | GoogleScholarGoogle Scholar |

Xu, S., Luosang, J., Hua, S., He, J., Ciren, A., Wang, W., Tong, X., Liang, Y., Wang, J., and Zheng, X. (2007). High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome. Journal of Genetics and Genomics 34, 720–729.
High altitude adaptation and phylogenetic analysis of Tibetan horse based on the mitochondrial genome.Crossref | GoogleScholarGoogle Scholar | 17707216PubMed |

Xu, S. Y., Sun, D. R., Song, N., Gao, T. X., Han, Z. Q., and Shui, B. N. (2017). Local adaptation shapes pattern of mitochondrial population structure in Sebastiscus marmoratus. Environmental Biology of Fishes 100, 763–774.
Local adaptation shapes pattern of mitochondrial population structure in Sebastiscus marmoratus.Crossref | GoogleScholarGoogle Scholar |

Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24, 1586–1591.
PAML 4: phylogenetic analysis by maximum likelihood.Crossref | GoogleScholarGoogle Scholar | 17483113PubMed |

Zhang, J., Nielsen, R., and Yang, Z. (2005). Evaluation of an improved branch–site likelihood method for detecting positive selection at the molecular level. Molecular Biology and Evolution 22, 2472–2479.
Evaluation of an improved branch–site likelihood method for detecting positive selection at the molecular level.Crossref | GoogleScholarGoogle Scholar | 16107592PubMed |