Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effectiveness of the electric fish fence as a behavioural barrier at a pumping station

Leonhard Egg A , Joachim Pander A , Melanie Mueller A and Juergen Geist A B
+ Author Affiliations
- Author Affiliations

A Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany.

B Corresponding author. Email: geist@wzw.tum.de

Marine and Freshwater Research 70(10) 1459-1464 https://doi.org/10.1071/MF18459
Submitted: 28 August 2018  Accepted: 21 March 2019   Published: 24 May 2019

Abstract

Dyke-based pumping stations have been linked with high fish mortalities during pumping events. Behavioural barriers like electric fish fences have been proposed as a promising solution to prevent entrainment of fish into pumps. In order to test the effectiveness of such barriers, the intake of a pumping station was equipped with a new generation electric fish fence while fish behaviour was observed with an adaptive resolution imaging sonar (ARIS) during non-electrified (reference) and electrified (treatment) operation modes. This study revealed the functionality of the fish fence as a behavioural barrier, with a fish turning rate of up to 72% at a mean water temperature of 4.3°C and a mean current velocity of 0.05 m s–1. These field results suggest that new-generation electric fish fences may be a promising solution to reduce the effects of pumping stations on fish.

Additional keywords: adaptive resolution imaging sonar, ARIS, fish monitoring, fish passage, fish protection device, flood protection.


References

Aufleger, M., Boettcher, H., and Brinkmeier, B. (2014). A new fish protection concept – flexible fish fences. In ‘Annual of the University of Architecture, Civil Engineering and Geodesy, 65th Anniversary Faculty of Hydraulic Engineering and 15th Anniversary Hydraulic Engineering in German’, 6–7 November 2014, Sofia, Bulgaria. pp. 225–232 (University of Agriculture, Civil Engineering and Geodesy: Sofia, Bulgaria.)

Berger, C., and Lehmann, B. (2017). Bemessung von Horizontalrechen an Wasserkraftanlagen für die Abwanderung von Lachssmolts und Aalen. Bemessung im Wasserbau-Klimaanpassung, Untersuchungen, Regeln, Planung, Ausführung 58, 339–350.

Bierschenk, B. M., Pander, J., Mueller, M., and Geist, J. (2019). Fish injury and mortality at pumping stations: a comparison of conventional and fish-friendly pumps. Marine and Freshwater Research 70, 449–458.
Fish injury and mortality at pumping stations: a comparison of conventional and fish-friendly pumps.Crossref | GoogleScholarGoogle Scholar |

Boettcher, H., Brinkmeier, B., and Aufleger, M. (2013). Flexible fish fences. In ‘Proceedings of the International Conference and Exhibition – Hydro 2013 – Promoting the Versatile Role of Hydro’. S.09.06. (Aqua-Media International: Sutton, UK.)

Boswell, K. M., Wilson, M. P., and Cowan, J. H. (2008). A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data. North American Journal of Fisheries Management 28, 799–807.
A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data.Crossref | GoogleScholarGoogle Scholar |

Brinkmeier, B., Aufleger, M., Boettcher, H., Unfer, G., and Zeiringer, B. (2016). Der Elektro-Seilrechen als Fischschutzeinrichtung an Kleinwasserkraftwerken. Available at https://www.tirol2050.at/uploads/tx_bh/brinkmeier_e_seilrechen.pdf [Verified 8 April 2019].

Bullen, C., and Carlson, T. (2003). Non-physical fish barrier systems: their development and potential applications to marine ranching. Reviews in Fish Biology and Fisheries 13, 201–212.
Non-physical fish barrier systems: their development and potential applications to marine ranching.Crossref | GoogleScholarGoogle Scholar |

Buysse, D., Mounton, A. M., Stevens, M., den Neucker, T., and Coeck, J. (2014). Mortality of European eel after downstream migration through two types of pumping stations. Fisheries Management and Ecology 21, 13–21.
Mortality of European eel after downstream migration through two types of pumping stations.Crossref | GoogleScholarGoogle Scholar |

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (2005) DWA – topics. Fish protection technologies and downstream fishways. Dimensioning, design, effectiveness, inspection. Available at http://www.dwa.de/dwa/shop/produkte.nsf/A921575C1F423658C125753C003483D1/$file/vorschau_DWA-Topics_Fish_Protection_Technologies.pdf [Verified 8 April 2019].

Ebel, G. (2013). ‘Fischschutz und Fischabstieg an Wasserkraftanlagen – Handbuch Rechen- und Bypasssysteme. Ingenieurbiologische Grundlagen, Modellierung und Prognose, Bemessung und Gestaltung.’ 1st Edn. (Büro für Gewässerökologie und Fischereibiologie Dr. Ebel: Halle, Germany.)

Egg, L., Mueller, M., Pander, J., Knott, J., and Geist, J. (2017). Improving European silver eel (Anguilla anguilla) downstream migration by undershot sluice gate management at a small-scale hydropower plant. Ecological Engineering A 106, 349–357.
Improving European silver eel (Anguilla anguilla) downstream migration by undershot sluice gate management at a small-scale hydropower plant.Crossref | GoogleScholarGoogle Scholar |

Egg, L., Pander, J., Mueller, M., and Geist, J. (2018). Comparison of sonar-, camera- and net-based methods in detecting riverine fish movement patterns. Marine and Freshwater Research 69, 1905–1912.
Comparison of sonar-, camera- and net-based methods in detecting riverine fish movement patterns.Crossref | GoogleScholarGoogle Scholar |

Gosset, C., and Travade, F. (1999). Devices to aid downstream salmonid migration: behavioral barriers. Cybium 23, 45–66.

Heimerl, S. (2017). ‘Biologische Durchgängigkeit von Fließgewässern. Ausgewählte Beiträge aus der Fachzeitschrift WasserWirtschaft’. (Springer: Wiesbaden, Germany.)

Knudsen, F. R., Enger, P. S., and Sand, O. (1994). Avoidance responses to low frequency sound in downstream migrating Atlantic salmon smolt, Salmo salar. Journal of Fish Biology 45, 227–233.
Avoidance responses to low frequency sound in downstream migrating Atlantic salmon smolt, Salmo salar.Crossref | GoogleScholarGoogle Scholar |

Kreuzer, F. C. (1986). Kleinspannungs-Fischscheuch-und-Leitanlagen. Oesterreichs Fischerei 39, 240–246.

Larinier, M. (2008). Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 609, 97–108.
Fish passage experience at small-scale hydro-electric power plants in France.Crossref | GoogleScholarGoogle Scholar |

McNabb, C., Liston, C., and Borthwick, S. (2003). Passage of juvenile Chinook salmon and other fish species through Archimedes lifts and a Hidrostal pump at Red Bluff, California. Transactions of the American Fisheries Society 132, 326–334.
Passage of juvenile Chinook salmon and other fish species through Archimedes lifts and a Hidrostal pump at Red Bluff, California.Crossref | GoogleScholarGoogle Scholar |

Mueller, M., Pander, J., and Geist, J. (2017). Evaluation of external fish injury caused by hydropower plants based on a novel field-based protocol. Fisheries Management and Ecology 24, 240–255.
Evaluation of external fish injury caused by hydropower plants based on a novel field-based protocol.Crossref | GoogleScholarGoogle Scholar |

Noatch, M. R., and Suski, C. D. (2012). Non-physical barriers to deter fish movements. Environmental Reviews 20, 71–82.
Non-physical barriers to deter fish movements.Crossref | GoogleScholarGoogle Scholar |

Sager, D. R., Hocutt, C. H., and Stauffer, J. R. (1987). Estuarine fish responses to strobe light, bubble curtains and strobe light/bubble-curtain combinations as influenced by water flow rate and flash frequencies. Fisheries Research 5, 383–399.
Estuarine fish responses to strobe light, bubble curtains and strobe light/bubble-curtain combinations as influenced by water flow rate and flash frequencies.Crossref | GoogleScholarGoogle Scholar |

Topál, J., and Csányi, V. (1999). Interactive learning in the paradise fish (Macropodus opercularis): an ethological interpretation of the second-order conditioning paradigm. Animal Cognition 2, 197–206.
Interactive learning in the paradise fish (Macropodus opercularis): an ethological interpretation of the second-order conditioning paradigm.Crossref | GoogleScholarGoogle Scholar |

Turnpenny, A., and O’Keeffe, N. (2005). Screening for intake and outfalls: a best practice guide. Environment Agency Science Report SC030231, Environment Agency, London, UK.