Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Restoring subtidal marine macrophytes in the Anthropocene: trajectories and future-proofing

G. Wood A J , E. M. Marzinelli A B C D , M. A. Coleman E , A. H. Campbell F , N. S. Santini G , L. Kajlich A , J. Verdura H , J. Wodak I , P. D. Steinberg A C D and A. Vergés A D
+ Author Affiliations
- Author Affiliations

A Centre for Marine Bio-Innovation, School of Biological Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.

B School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.

C Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore.

D Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW 2088, Australia.

E Department of Primary Industries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW 2450, Australia.

F GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Qld 4556, Australia.

G Cátedra CONACYT-Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04500, Ciudad de México, Mexico

H Universitat de Girona, Facultat de Ciències, Institut d’Ecologia Aquàtica, Campus Montilivi, E-17071 Girona, Spain.

I Faculty of Art and Design, The University of New South Wales, Sydney, NSW 2052, Australia.

J Corresponding author. Email: georgina.wood@unsw.edu.au

Marine and Freshwater Research 70(7) 936-951 https://doi.org/10.1071/MF18226
Submitted: 21 June 2018  Accepted: 21 January 2019   Published: 8 April 2019

Abstract

Anthropogenic activities have caused profound changes globally in biodiversity, species interactions and ecosystem functions and services. In terrestrial systems, restoration has emerged as a useful approach to mitigate these changes, and is increasingly recognised as a tool to fortify ecosystems against future disturbances. In marine systems, restoration is also gaining traction as a management tool, but it is still comparatively scant and underdeveloped relative to terrestrial environments. Key coastal habitats, such as seaweed forests and seagrass meadows are showing widespread patterns of decline around the world. As these important ecosystems increasingly become the target of emerging marine restoration campaigns, it is important not only to address current environmental degradation issues, but also to focus on the future. Given the rate at which marine and other environments are changing, and given predicted increases in the frequency and magnitude of multiple stressors, we argue for an urgent need for subtidal marine macrophyte restoration efforts that explicitly incorporate future-proofing in their goals. Here we highlight emerging scientific techniques that can help achieve this, and discuss changes to managerial, political and public frameworks that are needed to support scientific innovation and restoration applications at scale.

Additional keywords: bacteria, climate change, conservation, ecology, evolution, plants, restoration.


References

Abelson, A., Halpern, B. S., Reed, D. C., Orth, R. J., Kendrick, G. A., Beck, M. W., Belmaker, J., Krause, G., Edgar, G. J., Airoldi, L., Brokovich, E., France, R., Shashar, N., de Blaeij, A., Stambler, N., Salameh, P., Shechter, M., and Nelson, P. A. (2016). Upgrading marine ecosystem restoration using ecological‐social concepts. Bioscience 66, 156–163.
Upgrading marine ecosystem restoration using ecological‐social concepts.Crossref | GoogleScholarGoogle Scholar | 26977115PubMed |

Airoldi, L., and Beck, M. W. (2007). Loss, status and trends for coastal habitats of Europe. Oceanography and Marine Biology 45, 345–405.

Anthony, K., Bay, L. K., Costanza, R., Firn, J., Gunn, J., Harrison, P., Heyward, A., Lundgren, P., Mead, D., Moore, T., Mumby, P. J., van Oppen, M. J. H., Robertson, J., Runge, M. C., Suggett, D. J., Schaffelke, B., Wachenfeld, D., and Walshe, T. (2017). New interventions are needed to save coral reefs. Nature Ecology & Evolution 1, 1420–1422.
New interventions are needed to save coral reefs.Crossref | GoogleScholarGoogle Scholar |

Armstrong, D. P., Hayward, M. W., Moro, D., and Seddon, P. J. (2015). ‘Advances in Reintroduction Biology of Australian and New Zealand Fauna.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles. Nature 437, 349–355.
Marine microorganisms and global nutrient cycles.Crossref | GoogleScholarGoogle Scholar | 16163345PubMed |

Assis, J., Berecibar, E., Claro, B., Alberto, F., Reed, F., Raimondi, P., and Serrão, E. A. (2017). Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Scientific Reports 7, 44348.
Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal.Crossref | GoogleScholarGoogle Scholar | 28276501PubMed |

Azam, F., and Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews. Microbiology 5, 782–791.
Microbial structuring of marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 17853906PubMed |

Babcock, R. C., Shears, N. T., Alcala, A. C., Barrett, N. S., Edgar, G. J., Lafferty, K. D., McClanahan, T. R., and Russ, G. R. (2010). Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proceedings of the National Academy of Sciences of the United States of America 107, 18256–18261.
Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects.Crossref | GoogleScholarGoogle Scholar | 20176941PubMed |

Baine, M. S. P. (2001). Artificial reefs: a review of their design, application, management and performance. Ocean and Coastal Management 44, 241–259.
Artificial reefs: a review of their design, application, management and performance.Crossref | GoogleScholarGoogle Scholar |

Bashan, Y., de-Bashan, L. E., Prabhu, S. R., and Hernandez, J. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil 378, 1–33.
Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013).Crossref | GoogleScholarGoogle Scholar |

Bayraktarov, E., Saunders, M. I., Abdullah, S., Mills, M., Beher, J., Possingham, H. P., Mumby, P. J., and Lovelock, C. E. (2016). The cost and feasibility of marine coastal restoration. Ecological Applications 26, 1055–1074.
The cost and feasibility of marine coastal restoration.Crossref | GoogleScholarGoogle Scholar | 27509748PubMed |

Beardmore, J. A., and Porter, J. S. (2003). Genetically modified organisms and aquaculture. FAO Fisheries Circular number 989, FIRI/C989(En), Food and Agriculture Organization of the United Nations, Rome, Italy.

Bellgrove, A., Mckenzie, P. F., Cameron, H., and Pocklington, J. B. (2017). Restoring rocky intertidal communities: lessons from a benthic macroalgal ecosystem engineer. Marine Pollution Bulletin 117, 17–27.
Restoring rocky intertidal communities: lessons from a benthic macroalgal ecosystem engineer.Crossref | GoogleScholarGoogle Scholar | 28202275PubMed |

Bennett, S., Wernberg, T., Arackal Joy, B., de Bettignies, T., and Campbell, A. H. (2015). Central and rear-edge populations can be equally vulnerable to warming. Nature Communications 6, 10280.
Central and rear-edge populations can be equally vulnerable to warming.Crossref | GoogleScholarGoogle Scholar | 26691184PubMed |

Bennett, S., Wernberg, T., Connell, S. D., Hobday, A. J., Johnson, C. R., and Poloczanska, E. S. (2016). The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests. Marine and Freshwater Research 67, 47–56.
The ‘Great Southern Reef’: social, ecological and economic value of Australia’s neglected kelp forests.Crossref | GoogleScholarGoogle Scholar |

Bourque, A. S., Kenworthy, W. J., and Fourqurean, J. W. (2015). Impacts of physical disturbance on ecosystem structure in subtropical seagrass meadows. Marine Ecology Progress Series 540, 27–41.
Impacts of physical disturbance on ecosystem structure in subtropical seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Brancalion, P. H. S., and Van Melis, J. (2017). On the need for innovation in ecological restoration. Annals of the Missouri Botanical Garden 102, 227–236.
On the need for innovation in ecological restoration.Crossref | GoogleScholarGoogle Scholar |

Brancalion, P. H. S., Viani, R. A. G., Strassburg, B. B. N., and Rodrigues, R. R. (2012). Finding the money for tropical forest restoration. Unasylva 63, 41–49.

Brown, B., Fadillah, R., Nurdin, Y., Soulsby, I., and Ahmad, R. (2014). Case study: community based ecological mangrove rehabilitation (CBEMR) in Indonesia from small (12–33 ha) to medium scales (400 ha) with pathways for adoption at larger scales (>5000 ha). Sapiens 7, 1–12.

Brudvig, L. A. (2011). The restoration of biodiversity: where has research been and where does it need to go? American Journal of Botany 98, 549–558.
The restoration of biodiversity: where has research been and where does it need to go?Crossref | GoogleScholarGoogle Scholar | 21613146PubMed |

Bulleri, F., and Chapman, M. G. (2010). The introduction of coastal infrastructure as a driver of change in marine environments. Journal of Applied Ecology 47, 26–35.
The introduction of coastal infrastructure as a driver of change in marine environments.Crossref | GoogleScholarGoogle Scholar |

Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F., and Rey-Benayas, J. M. (2011). Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends in Ecology & Evolution 26, 541–549.
Restoration of ecosystem services and biodiversity: conflicts and opportunities.Crossref | GoogleScholarGoogle Scholar |

Burkholder, J., Libra, B., Weyer, P., Heathcote, S., Kolpin, D., Thorne, P. S., and Wichman, M. (2007). Impacts of waste from concentrated animal feeding operations on water quality. Environmental Health Perspectives 115, 308–312.
Impacts of waste from concentrated animal feeding operations on water quality.Crossref | GoogleScholarGoogle Scholar | 17384784PubMed |

Calumpong, H. P., and Fonseca, M. S. (2001). Seagrass transplantation and other seagrass restoration methods. In ‘Global Seagrass Research Methods’. (Eds F. T. Short and R. G. Coles.) pp. 425–443. (Elsevier: Amsterdam, Netherlands.)

Campbell, A. H., Marzinelli, E. M., Vergés, A., Coleman, M. A., and Steinberg, P. D. (2014a). Towards restoration of missing underwater forests. PLoS One 9, e84106.
Towards restoration of missing underwater forests.Crossref | GoogleScholarGoogle Scholar | 24416198PubMed |

Campbell, A. H., Vergés, A., and Steinberg, P. D. (2014b). Demographic consequences of disease in a habitat‐forming seaweed and impacts on interactions between natural enemies. Ecology 95, 142–152.
Demographic consequences of disease in a habitat‐forming seaweed and impacts on interactions between natural enemies.Crossref | GoogleScholarGoogle Scholar | 24649654PubMed |

Campbell, A. H., Marzinelli, E. M., Gelber, J., and Steinberg, P. D. (2015). Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Frontiers in Microbiology 6, 230.
Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed.Crossref | GoogleScholarGoogle Scholar | 25859245PubMed |

Carney, L. T., Waaland, J. R., Klinger, T., and Ewing, K. (2005). Restoration of the bull kelp Nereocystis luetkeana in nearshore rocky habitats. Marine Ecology Progress Series 302, 49–61.
Restoration of the bull kelp Nereocystis luetkeana in nearshore rocky habitats.Crossref | GoogleScholarGoogle Scholar |

Casey, J. M., Connolly, S. R., and Ainsworth, T. D. (2015). Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens. Scientific Reports 5, 11903.
Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens.Crossref | GoogleScholarGoogle Scholar | 26144865PubMed |

Cetina‐Heredia, P., Roughan, M., Van Sebille, E., and Coleman, M. A. (2014). Long‐term trends in the East Australian Current separation latitude and eddy driven transport. Journal of Geophysical Research. Oceans 119, 4351–4366.
Long‐term trends in the East Australian Current separation latitude and eddy driven transport.Crossref | GoogleScholarGoogle Scholar |

Cetina-Heredia, P., Roughan, M., Sebille, E., Feng, M., and Coleman, M. (2015). Strengthened currents override the effect of warming on lobster larval dispersal and survival. Global Change Biology 21, 4377–4386.
Strengthened currents override the effect of warming on lobster larval dispersal and survival.Crossref | GoogleScholarGoogle Scholar | 26268457PubMed |

Chaves, R. B., Durigan, G., Brancalion, P. H. S., and Aronson, J. (2015). On the need of legal frameworks for assessing restoration projects success: new perspectives from São Paulo state (Brazil). Restoration Ecology 23, 754–759.
On the need of legal frameworks for assessing restoration projects success: new perspectives from São Paulo state (Brazil).Crossref | GoogleScholarGoogle Scholar |

Chefaoui, R. M., Duarte, C. M., and Serrao, E. A. (2018). Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology 24, 4919–4928.
Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 30006980PubMed |

Choi, Y. D. (2004). Theories for ecological restoration in changing environment: toward ‘futuristic’ restoration. Ecological Research 19, 75–81.
Theories for ecological restoration in changing environment: toward ‘futuristic’ restoration.Crossref | GoogleScholarGoogle Scholar |

Choi, Y. D. (2007). Restoration ecology to the future: a call for new paradigm. Restoration Ecology 15, 351–353.
Restoration ecology to the future: a call for new paradigm.Crossref | GoogleScholarGoogle Scholar |

Cinner, J. E., Huchery, C., Macneil, M. A., Graham, N. A., Mcclanahan, T. R., Maina, J., Maire, E., Kittinger, J. N., Hicks, C. C., Mora, C., Allison, E. H., D’agata, S., Hoey, A., Feary, D. A., Crowder, L., Williams, I. D., Kulbicki, M., Vigliola, L., Wantiez, L., Edgar, G., Stuart-Smith, R. D., Sandin, S. A., Green, A. L., Hardt, M. J., Beger, M., Friedlander, A., Campbell, S. J., Holmes, K. E., Wilson, S. K., Brokovich, E., Brooks, A. J., Cruz-Motta, J. J., Booth, D. J., Chabanet, P., Gough, C., Tupper, M., Ferse, S. C., Sumaila, U. R., and Mouillot, D. (2016). Bright spots among the world’s coral reefs. Nature 535, 416–419.
Bright spots among the world’s coral reefs.Crossref | GoogleScholarGoogle Scholar | 27309809PubMed |

Clark, J. S., Poore, A. G., Ralph, P. J., and Doblin, M. A. (2013). Potential for adaptation in response to thermal stress in an intertidal macroalga. Journal of Phycology 49, 630–639.
Potential for adaptation in response to thermal stress in an intertidal macroalga.Crossref | GoogleScholarGoogle Scholar | 27007196PubMed |

Coleman, M. A., and Kelaher, B. P. (2009). Connectivity among fragmented populations of a habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales) on an urbanised coast. Marine Ecology Progress Series 381, 63–70.
Connectivity among fragmented populations of a habitat-forming alga, Phyllospora comosa (Phaeophyceae, Fucales) on an urbanised coast.Crossref | GoogleScholarGoogle Scholar |

Coleman, M. A., Kelaher, B. P., Steinberg, P. D., and Millar, A. J. K. (2008). Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. Journal of Phycology 44, 897–901.
Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline.Crossref | GoogleScholarGoogle Scholar | 27041607PubMed |

Coleman, M. A., Chambers, J., Knott, N. A., Malcolm, H. A., Harasti, D., Jordan, A., and Kelaher, B. P. (2011a). Connectivity within and among a network of temperate marine reserves. PLoS One 6, e20168.
Connectivity within and among a network of temperate marine reserves.Crossref | GoogleScholarGoogle Scholar | 21625388PubMed |

Coleman, M. A., Roughan, M., Macdonald, H. S., Connell, S. D., Gillanders, B. M., Kelaher, B. P., and Steinberg, P. D. (2011b). Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp. Journal of Ecology 99, 1026–1032.
Variation in the strength of continental boundary currents determines continent-wide connectivity in kelp.Crossref | GoogleScholarGoogle Scholar |

Coleman, M. A., Palmer-Brodie, A., and Kelaher, B. P. (2013). Conservation benefits of a network of marine reserves and partially protected areas. Biological Conservation 167, 257–264.
Conservation benefits of a network of marine reserves and partially protected areas.Crossref | GoogleScholarGoogle Scholar |

Coleman, M. A., Bates, A. E., Stuart-Smith, R. D., Malcolm, H. A., Harasti, D., Jordan, A., Knott, A., Edgar, G. J., and Kelaher, B. P. (2015). Functional traits reveal early responses in marine reserves following protection from fishing. Diversity & Distributions 21, 876–887.
Functional traits reveal early responses in marine reserves following protection from fishing.Crossref | GoogleScholarGoogle Scholar |

Coleman, M. A., Cetina-Heredia, P., Roughan, M., Feng, M., Van Sebille, E., and Kelaher, B. P. (2017). Anticipating changes to future connectivity within a network of marine protected areas. Global Change Biology 23, 3533–3542.
Anticipating changes to future connectivity within a network of marine protected areas.Crossref | GoogleScholarGoogle Scholar | 28122402PubMed |

Côté, I. M., Darling, E. S., and Brown, C. J. (2016). Interactions among ecosystem stressors and their importance in conservation. Proceedings of the Royal Society of London – B. Biological Sciences 283, 20152592.
Interactions among ecosystem stressors and their importance in conservation.Crossref | GoogleScholarGoogle Scholar |

Crain, C. M., Kroeker, K., and Halpern, B. S. (2008). Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters 11, 1304–1315.
Interactive and cumulative effects of multiple human stressors in marine systems.Crossref | GoogleScholarGoogle Scholar | 19046359PubMed |

Crouzeilles, R., Curran, M., Ferreira, M. S., Lindenmayer, D. B., Grelle, C. E. V., and Rey Benayas, J. M. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nature Communications 7, 11666.
A global meta-analysis on the ecological drivers of forest restoration success.Crossref | GoogleScholarGoogle Scholar | 27193756PubMed |

Cunningham, S. (2002). ‘The Restoration Economy: The Greatest New Growth Frontier.’ (Berrett-Koehler Publishers: San Francisco, CA, USA.)

Dafforn, K. A., Glasby, T. M., Airoldi, L., Rivero, N. K., Mayer-Pinto, M., and Johnston, E. L. (2015). Marine urbanization: an ecological framework for designing multifunctional artificial structures. Frontiers in Ecology and the Environment 13, 82–90.
Marine urbanization: an ecological framework for designing multifunctional artificial structures.Crossref | GoogleScholarGoogle Scholar |

Datta, D., Chattopadhyay, R., and Guha, P. (2012). Community based mangrove management: a review on status and sustainability. Journal of Environmental Management 107, 84–95.
Community based mangrove management: a review on status and sustainability.Crossref | GoogleScholarGoogle Scholar | 22595074PubMed |

Davis, K. L., Coleman, M. A., Connell, S. D., Russell, B. D., Gillanders, B. M., and Kelaher, B. P. (2017). Ecological performance of construction materials subject to ocean warming and acidification. Marine Environmental Research 131, 177–182.
Ecological performance of construction materials subject to ocean warming and acidification.Crossref | GoogleScholarGoogle Scholar | 28988853PubMed |

DeFries, R. S., Ellis, E. C., Chapin, I. I. I. F. S., Matson, P. A., Turner, I. B. L., Agrawal, A., Crutzen, P. J., Field, C., Gleick, P., Kareiva, P. M., Lambin, E., Liverman, D., Ostrom, E., Sanchez, P. A., and Syvitski, J. (2012). Planetary opportunities: a social contract for global change science to contribute to a sustainable future. Bioscience 62, 603–606.
Planetary opportunities: a social contract for global change science to contribute to a sustainable future.Crossref | GoogleScholarGoogle Scholar |

dela Cruz, D. W., Villanueva, R. D., and Baria, M. V. B. (2014). Community-based, low-tech method of restoring a lost thicket of Acropora corals. ICES Journal of Marine Science 71, 1866–1875.
Community-based, low-tech method of restoring a lost thicket of Acropora corals.Crossref | GoogleScholarGoogle Scholar |

Delgado, C. L., Wada, N., Rosegrant, M. W., Meijer, S., and Ahmed, M. (2003). Fish to 2020: supply and demand in changing global markets. Worldfish Center Technical Report 62, Penang. International Food Policy Research Institute, Washington, DC, USA.

Dobson, A. P., Bradshaw, A. D., and Baker, A. J. M. (1997). Hopes for the future: restoration ecology and conservation biology. Science 277, 515–522.
Hopes for the future: restoration ecology and conservation biology.Crossref | GoogleScholarGoogle Scholar |

Dornelas, M., Gotelli, N. J., Mcgill, B., Shimadzu, H., Moyes, F., Sievers, C., and Magurran, A. E. (2014). Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299.
Assemblage time series reveal biodiversity change but not systematic loss.Crossref | GoogleScholarGoogle Scholar | 24744374PubMed |

Duarte, C. M., and Chiscano, C. L. (1999). Seagrass biomass and production: a reassessment. Aquatic Botany 65, 159–174.
Seagrass biomass and production: a reassessment.Crossref | GoogleScholarGoogle Scholar |

Duarte, C., Dennison, W., Orth, R., and Carruthers, T. (2008). The charisma of coastal ecosystems: addressing the imbalance. Estuaries and Coasts 31, 233–238.
The charisma of coastal ecosystems: addressing the imbalance.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà, N. (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3, 961–968.
The role of coastal plant communities for climate change mitigation and adaptation.Crossref | GoogleScholarGoogle Scholar |

Duarte, B., Martins, I., Rosa, R., Matos, A. R., Roleda, M. Y., Reausch, T. B. H., Engelen, A. H., Serrao, E. A., Pearson, G. A., Marques, J. C., Cacador, I., Duarte, C. M., and Jueterbock, A. (2018). Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptive potential. Frontiers in Marine Science 5, 190–202.
Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptive potential.Crossref | GoogleScholarGoogle Scholar |

Dubilier, N., Bergin, C., and Loot, C. (2008). Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nature Reviews. Microbiology 6, 725–740.
Symbiotic diversity in marine animals: the art of harnessing chemosynthesis.Crossref | GoogleScholarGoogle Scholar | 18794911PubMed |

Duffy, J. E., and Hay, M. E. (1990). Seaweed adaptation to herbivory. Bioscience 40, 368–375.
Seaweed adaptation to herbivory.Crossref | GoogleScholarGoogle Scholar |

Duggins, D., Eckman, J. E., Siddon, C. E., and Klinger, T. (2001). Interactive roles of mesograzers and current flow in survival of kelps. Marine Ecology Progress Series 223, 143–155.
Interactive roles of mesograzers and current flow in survival of kelps.Crossref | GoogleScholarGoogle Scholar |

Egan, S., Harder, T., Burke, C., Steinburg, P. D., Kjelleberg, S., and Thomas, T. (2013). The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiology Reviews 37, 462–476.
The seaweed holobiont: understanding seaweed–bacteria interactions.Crossref | GoogleScholarGoogle Scholar | 23157386PubMed |

Engel, S., Jensen, P. R., and Fenical, W. (2002). Chemical ecology of marine microbial defense. Chemistry and Ecology 28, 1971–1985.
Chemical ecology of marine microbial defense.Crossref | GoogleScholarGoogle Scholar |

Falace, A., Kaleb, S., De la Fuente, G., Asnaghi, V., and Chiantore, M. (2018). Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective. PLoS One 13, e0193011.
Ex situ cultivation protocol for Cystoseira amentacea var. stricta (Fucales, Phaeophyceae) from a restoration perspective.Crossref | GoogleScholarGoogle Scholar | 29447238PubMed |

Falkenberg, L. J., Connell, S. D., and Russell, B. D. (2013). Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat. Journal of Applied Ecology 50, 51–58.
Disrupting the effects of synergies between stressors: improved water quality dampens the effects of future CO2 on a marine habitat.Crossref | GoogleScholarGoogle Scholar |

Ferrario, F., Iveša, L., Jaklin, A., Perkol‐Finkel, S., Airoldi, L., and Siqueira, T. (2016). The overlooked role of biotic factors in controlling the ecological performance of artificial marine habitats. Journal of Applied Ecology 53, 16–24.
The overlooked role of biotic factors in controlling the ecological performance of artificial marine habitats.Crossref | GoogleScholarGoogle Scholar |

Filbee-Dexter, K., and Scheibling, R. (2012). Hurricane-mediated defoliation of kelp beds and pulsed delivery of kelp detritus to offshore sedimentary habitats. Marine Ecology Progress Series 455, 51–64.
Hurricane-mediated defoliation of kelp beds and pulsed delivery of kelp detritus to offshore sedimentary habitats.Crossref | GoogleScholarGoogle Scholar |

Firth, L. B., Thompson, R. C., Bohn, K., Abbiati, M., Airoldi, L., Bouma, T. J., Bozzeda, F., Ceccherelli, V. U., Colangelo, M. A., Evans, A., Ferrario, F., Hanley, M. E., Hinz, H., Hoggart, S. P. G., Jackson, J. E., Moore, P., Morgan, E. H., Perkol-Finkel, S., Skov, M. W., Strain, E. M., van Belzen, J., and Hawkins, S. J. (2014). Between a rock and a hard place: environmental and engineering considerations when designing coastal defence structures. Coastal Engineering 87, 122–135.
Between a rock and a hard place: environmental and engineering considerations when designing coastal defence structures.Crossref | GoogleScholarGoogle Scholar |

Fonseca, M. S., Kenworthy, W. J., Courtney, E. X., and Hall, M. O. (1994). Seagrass planting in the southeastern United States: methods for accelerating habitat development. Restoration Ecology 2, 198–212.
Seagrass planting in the southeastern United States: methods for accelerating habitat development.Crossref | GoogleScholarGoogle Scholar |

Fonseca, M. S., Kenworthy, W. J., and Thayer, G. W. (1998). Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. NOAA Coastal Ocean Program Decision Analysis Series number 12, NOAA Coastal Ocean Office, Silver Spring, MD, USA.

Ford, T., and Meux, B. (2010). Giant kelp community restoration in Santa Monica Bay. Urban Coast 2, 43–46.

Forsman, A., and Wennersten, L. (2016). Inter-individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies. Ecography 39, 630–648.
Inter-individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (2015). Genetic rescue of small inbred populations: meta‐analysis reveals large and consistent benefits of gene flow. Molecular Ecology 24, 2610–2618.
Genetic rescue of small inbred populations: meta‐analysis reveals large and consistent benefits of gene flow.Crossref | GoogleScholarGoogle Scholar | 25740414PubMed |

Frankham, R. (2016). Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biological Conservation 195, 33–36.
Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., Ralls, K., Eldridge, M., Dudash, M. R., Fenster, C. B., Lacy, R. C., and Sunnucks, P. (2017). ‘Genetic Management of Fragmented Animal and Plant Populations.’ (Oxford University Press: Oxford, UK.)

Gallagher, R. V., Hancock, N., Makinson, R. O., and Hogbin, T. (2014). Assisted colonisation as a climate change adaptation tool. Report to the Biodiversity Hub of the NSW Office of Environment and Heritage. Appendix to the NSW Draft Translocation Policy (2007). (NSW Biodiversity Research Hub: NSW, Australia.) Available at https://www.mq.edu.au/about/about-the-university/faculties-and-departments/faculty-of-science-and-engineering/departments-and-centres/department-of-biological-sciences/our-research/biodiversity-node-archived/Assisted-Colonisation-as-a-Climate-Change-Adaptation-Tool.-Gallagher-et-al-2014.pdf [Verified 26 February 2019].

Gellie, N. J., Mills, J. G., Breed, M. F., and Lowe, A. J. (2017). Revegetation rewilds the soil bacterial microbiome of an old field. Molecular Ecology 26, 2895–2904.
Revegetation rewilds the soil bacterial microbiome of an old field.Crossref | GoogleScholarGoogle Scholar | 28261928PubMed |

Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G. K., and Wilmoth, J. (2014). World population stabilization unlikely this century. Science 346, 234–237.
World population stabilization unlikely this century.Crossref | GoogleScholarGoogle Scholar | 25301627PubMed |

Gianni, F., Bartolini, F., Airoldi, L., Ballesteros, E., Francour, P., Guidetti, P., Meinesz, A., Thibaut, T., and Mangialajo, L. (2013). Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of marine protected areas. Advances in Oceanography and Limnology 4, 83–101.
Conservation and restoration of marine forests in the Mediterranean Sea and the potential role of marine protected areas.Crossref | GoogleScholarGoogle Scholar |

Gillies, C., Fitzsimons, J., Branigan, S., Hale, L., Hancock, B., Creighton, C., Alleway, H., Bishop, M., Brown, S., Chamberlain, D., Cleveland, B., Crawford, C., Crawford, M., Diggles, D. B. K., Ford, J., Hamer, P., Hart, A., Johnston, E., Mcdonald, T., and Winstanley, R. (2015). Scaling-up marine restoration efforts in Australia. Ecological Management & Restoration 16, 84–85.
Scaling-up marine restoration efforts in Australia.Crossref | GoogleScholarGoogle Scholar |

Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W., and Holt, R. D. (2010). A framework for community interactions under climate change. Trends in Ecology & Evolution 25, 325–331.
A framework for community interactions under climate change.Crossref | GoogleScholarGoogle Scholar |

Goodsell, P. J., and Chapman, M. G. (2009). Rehabilitation of habitat and the value of artificial reefs. In ‘Marine Hard Bottom Communities: Patterns, Dynamics, Diversity, and Change’. (Ed. M. Wahl.) pp. 333–344. (Springer-Verlag.)

Grant, J., Wilson, K., Grover, A., and Togstad, H. (1982). Early development of Pendleton artificial reef. Marine Fisheries Review 44, 53–60.

Groffman, P. M., Stylinski, C., Nisbet, M. C., Duarte, C. M., Jordan, R., Burgin, A., Previtali, M. A., and Coloso, J. (2010). Restarting the conversation: challenges at the interface between ecology and society. Frontiers in Ecology and the Environment 8, 284–291.
Restarting the conversation: challenges at the interface between ecology and society.Crossref | GoogleScholarGoogle Scholar |

Halpern, B. S., Silliman, B. R., Olden, J. D., Bruno, J. P., and Bertness, M. D. (2007). Incorporating positive interactions in aquatic restoration and conservation. Frontiers in Ecology and the Environment 5, 153–160.
Incorporating positive interactions in aquatic restoration and conservation.Crossref | GoogleScholarGoogle Scholar |

Harley, C., Anderson, K., Demes, K., Jorve, J., Kordas, R. A., Coyle, T., and Graham, M. (2012). Effects of climate change on global seaweed communities. Journal of Phycology 48, 1064–1078.
Effects of climate change on global seaweed communities.Crossref | GoogleScholarGoogle Scholar | 27011268PubMed |

Heck, K. L., and Orth, R. J. (1980). Seagrass habitats: the roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages. Estuarine Perspectives 1980, 449–464.
Seagrass habitats: the roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages.Crossref | GoogleScholarGoogle Scholar |

Higgs, E., Falk, D. A., Guerrini, A., Hall, M., Harris, J., Hobbs, R. J., Jackson, S. T., Rhemtulla, J. M., and Throop, W. (2014). The changing role of history in restoration ecology. Frontiers in Ecology and the Environment 12, 499–506.
The changing role of history in restoration ecology.Crossref | GoogleScholarGoogle Scholar |

Hobbs, R. J., and Harris, J. A. (2001). Restoration ecology: repairing the earth’s ecosystems in the new millennium. Restoration Ecology 9, 239–246.
Restoration ecology: repairing the earth’s ecosystems in the new millennium.Crossref | GoogleScholarGoogle Scholar |

Hoffmann, A., Griffin, P., Dillon, S., Catullo, R., Rane, R., Byrne, M., Jordan, R., Oakeshott, J., Weeks, A., Joseph, L., Lockhart, P., Borevitz, J., and Sgro, C. (2015). A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses 2, 1.
A framework for incorporating evolutionary genomics into biodiversity conservation and management.Crossref | GoogleScholarGoogle Scholar |

Holguin, G., Vazquez, P., and Bashan, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils 33, 265–278.
The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview.Crossref | GoogleScholarGoogle Scholar |

Holl, K. D., and Howarth, R. B. (2000). Paying for restoration. Restoration Ecology 8, 260–267.
Paying for restoration.Crossref | GoogleScholarGoogle Scholar |

Hong, S. H., and Lee, E. Y. (2014). Vegetation restoration and prevention of coastal sand dunes erosion using ion exchange resins and the plant growth-promoting rhizobacteria Bacillus sp. SH1RP8 isolated from indigenous plants. International Biodeterioration & Biodegradation 95, 262–269.
Vegetation restoration and prevention of coastal sand dunes erosion using ion exchange resins and the plant growth-promoting rhizobacteria Bacillus sp. SH1RP8 isolated from indigenous plants.Crossref | GoogleScholarGoogle Scholar |

Houde, A. L., Garner, S. R., and Neff, B. D. (2015). Restoring species through reintroductions: strategies for source population selection. Restoration Ecology 23, 746–753.
Restoring species through reintroductions: strategies for source population selection.Crossref | GoogleScholarGoogle Scholar |

Hughes, R. A., and Stachowicz, J. J. (2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences of the United States of America 101, 8998–9002.
Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance.Crossref | GoogleScholarGoogle Scholar |

Hughes, A., Inouye, B. T. J., Johnson, M., Underwood, N., and Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology Letters 11, 609–623.
Ecological consequences of genetic diversity.Crossref | GoogleScholarGoogle Scholar | 18400018PubMed |

Hyndes, G. A., Heck, K. L., Vergés, A., Harvey, E. S., Kendrick, G. A., Lavery, P. S., McMahon, K., Orth, R. J., Pearce, A., and Vanderklift, M. (2016). Accelerating tropicalization and the transformation of temperate seagrass meadows. Bioscience 66, 938–948.
Accelerating tropicalization and the transformation of temperate seagrass meadows.Crossref | GoogleScholarGoogle Scholar | 28533562PubMed |

International Union for Conservation of Nature (2013). ‘Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. IUCN Species Survival Commission, Gland, Switzerland.

Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., and Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637.
Historical overfishing and the recent collapse of coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Johnson, C., Ling, S., Ross, J., Shepherd, S., and Miller, K. (2005). Establishment of the long‐spined sea urchin (Centrostephanus rodgersii) in Tasmania: first assessment of potential threats to fisheries. FRDC Final Report, 2001/044, School of Zoology and Tasmanian Aquaculture and Fisheries Institute, Univesity of Tasmania, Hobart, Tas., Australia.

Johnson, C. R., Chabot, R. H., Marzloff, M. P., and Wotherspoon, S. (2017). Knowing when (not) to attempt ecological restoration. Restoration Ecology 25, 140–147.
Knowing when (not) to attempt ecological restoration.Crossref | GoogleScholarGoogle Scholar |

Keenan, R., Lamb, D., Woldring, O., Irvine, A., and Jensen, R. (1997). Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia. Forest Ecology and Management 99, 117–131.
Restoration of plant biodiversity beneath tropical tree plantations in Northern Australia.Crossref | GoogleScholarGoogle Scholar |

Kendrick, G., and Statton, J. (2019). 2. Seagrass meadows. In ‘The Role of Restoration for Conserving Matters of National Environmental Significance’. (Eds I. M. McLeod, L. Boström-Einarsson, C. Johnson, G. Kendrick, C. Layton, A. A. Rogers, and J. Statton.) Report to the National Environmental Science Programme, pp. 17–41. Marine Biodiversity Hub, Hobart, Tas., Australia.

Kenworthy, W. J., Hall, M. O., Hammerstrom, K. K., Merello, M., and Schwartzschild, A. (2018). Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading. Ecological Engineering 112, 72–81.
Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading.Crossref | GoogleScholarGoogle Scholar |

Kettenring, K. M., Mercer, K. L., Adams, C. R., and Hines, J. (2014). Application of genetic diversity- ecosystem function research to ecological restoration. Journal of Applied Ecology 51, 339–348.
Application of genetic diversity- ecosystem function research to ecological restoration.Crossref | GoogleScholarGoogle Scholar |

Kleynhans, E. J., Otto, S. P., Reich, P. B., and Vellend, M. (2016). Adaptation to elevated CO2 in different biodiversity contexts. Nature Communications 7, 12358.
Adaptation to elevated CO2 in different biodiversity contexts.Crossref | GoogleScholarGoogle Scholar | 27510545PubMed |

Koch, M., Bowes, G., Ross, C., and Zhang, X. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19, 103–132.
Climate change and ocean acidification effects on seagrasses and marine macroalgae.Crossref | GoogleScholarGoogle Scholar | 23504724PubMed |

Krause-Jensen, D., and Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon sequestration. Nature Geoscience 9, 737–742.
Substantial role of macroalgae in marine carbon sequestration.Crossref | GoogleScholarGoogle Scholar |

Kronenberger, J. A., Funk, W. C., Smith, J. W., Fitzpatrick, S. W., Angeloni, L. M., Broder, E. D., and Ruell, E. W. (2017). Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies. Animal Conservation 20, 3–11.
Testing the demographic effects of divergent immigrants on small populations of Trinidadian guppies.Crossref | GoogleScholarGoogle Scholar |

Krumhansl, K. A., Okamoto, D. K., Rassweiler, A., Novak, M., Bolton, J. J., Cavanaugh, K. C., Connell, S. D., Johnson, C. R., Konar, B., Ling, S. D., Micheli, F., Norderhaug, K. M., Pérez-Matus, A., Sousa-Pinto, I., Reed, D. C., Salomon, A. K., Shears, N. T., Wernberg, T., Anderson, R. J., Barrett, N. S., Buschmann, A. H., Carr, M. H., Caselle, J. E., Derrien-Courtel, S., Edgar, G. J., Edwards, M., Estes, J. A., Goodwin, C., Kenner, M. C., Kushner, D. J., Moy, F. E., Nunn, J., Steneck, R. S., Vásquez, J., Watson, J., Witman, J. D., and Byrnes, J. E. K. (2016). Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America 113, 13785–13790.
Global patterns of kelp forest change over the past half-century.Crossref | GoogleScholarGoogle Scholar | 27849580PubMed |

Laegdsgaard, P. (2006). Ecology, disturbance and restoration of coastal saltmarsh in Australia: a review. Wetlands Ecology and Management 14, 379–399.
Ecology, disturbance and restoration of coastal saltmarsh in Australia: a review.Crossref | GoogleScholarGoogle Scholar |

Lamb, D. (2014). ‘Large-Scale Forest Restoration.’ (Routledge: Oxford, UK.)10.4324/9780203071649

Lefcheck, J. S., Orth, R. J., Dennison, W. C., Wilcox, D. J., Murphy, R. R., Keisman, J., Gurbisz, C., Hannam, M., Landry, J. B., Moore, K. A., Patrick, C. J., Testa, J., Weller, D. E., and Batiuk, R. A. (2018). Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences of the United States of America 115, 3658–3662.
Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region.Crossref | GoogleScholarGoogle Scholar | 29507225PubMed |

Lesen, A. E., Rogan, A., and Blum, M. J. (2016). Science communication though art: objectives, challenges, and outcomes. Trends in Ecology & Evolution 31, 657–660.
Science communication though art: objectives, challenges, and outcomes.Crossref | GoogleScholarGoogle Scholar |

Lesica, P., and Allendorf, F. W. (1999). Ecological genetics and the restoration of plant communities: mix or match? Restoration Ecology 7, 42–50.
Ecological genetics and the restoration of plant communities: mix or match?Crossref | GoogleScholarGoogle Scholar |

Levin, R. A., Voolstra, C. R., Agrawal, S., Steinberg, P. D., Suggett, D. J., and van Oppen, M. J. H. (2017). Engineering strategies to decode and enhance the genomes of coral symbionts. Frontiers in Microbiology 8, 1220.
Engineering strategies to decode and enhance the genomes of coral symbionts.Crossref | GoogleScholarGoogle Scholar | 28713348PubMed |

Lin, H., and Qin, S. (2014). Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade. Marine Drugs 12, 3025–3045.
Tipping points in seaweed genetic engineering: scaling up opportunities in the next decade.Crossref | GoogleScholarGoogle Scholar | 24857961PubMed |

Lindenmayer, D. B., and Likens, G. E. (2009). Adaptive monitoring: a new paradigm for long-term research and monitoring. Trends in Ecology & Evolution 24, 482–486.
Adaptive monitoring: a new paradigm for long-term research and monitoring.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Johnson, C. R., Frusher, S. D., and Ridgway, K. R. (2009). Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proceedings of the National Academy of Sciences of the United States of America 106, 22341–22345.
Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift.Crossref | GoogleScholarGoogle Scholar | 20018706PubMed |

Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., Kidwell, S. M., Kirby, M. X., Peterson, C. H., and Jackson, J. B. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809.
Depletion, degradation, and recovery potential of estuaries and coastal seas.Crossref | GoogleScholarGoogle Scholar | 16794081PubMed |

Lotze, H. K., Coll, M., Magera, A. M., Warde-Paige, C., and Airoldi, L. (2011). Recovery of marine animal populations and ecosystems. Trends in Ecology & Evolution 26, 595–605.
Recovery of marine animal populations and ecosystems.Crossref | GoogleScholarGoogle Scholar |

Lovelock, C. E., Atwood, T., Baldock, J., Duarte, C. M., Hickey, S., Lavery, P. S., Masque, P., Macreadie, P. I., Ricart, A. M., Serrano, O., and Steven, A. (2017). Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment 15, 257–265.
Assessing the risk of carbon dioxide emissions from blue carbon ecosystems.Crossref | GoogleScholarGoogle Scholar |

Lu, T. T., and Williams, S. L. (1994). Genetic diversity and genetic structure in the brown alga Halidrys dioica (Fucales: Cystoseiraceae) in Southern California. Marine Biology 121, 363–371.
Genetic diversity and genetic structure in the brown alga Halidrys dioica (Fucales: Cystoseiraceae) in Southern California.Crossref | GoogleScholarGoogle Scholar |

Lyerly, C. M., Hernández Cordero, A. L., Foreman, K. L., Phillips, S. W., and Dennison, W. C. (Eds) (2014). New insights: science-based evidence of water quality improvements, challenges, and opportunities in the Chesapeake. Available at http://ian.umces.edu/press/reports/publication/438/new_insights_science_based_evidence_of_water_quality_improvements_challenges_and_opportunities_in_the_chesapeake_2014-02-24/ [Verified 10 June 2018].

Macreadie, P. I., Nielsen, D. A., Kelleway, J. J., Atwood, T. B., Seymour, J. R., Petrou, K., Connolly, R. M., Thomson, A. C. G., Trevathan-Tackett, S. M., and Ralph, P. J. (2017). Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment 15, 206–213.
Can we manage coastal ecosystems to sequester more blue carbon?Crossref | GoogleScholarGoogle Scholar |

Mamo, L. T., Kelaher, B. P., Coleman, M. A., and Dwyer, P. G. (2018). Protecting threatened species from coastal infrastructure upgrades: the importance of evidence-based conservation. Ocean and Coastal Management 165, 161–166.
Protecting threatened species from coastal infrastructure upgrades: the importance of evidence-based conservation.Crossref | GoogleScholarGoogle Scholar |

Mann, K. H. (1973). Seaweeds: their productivity and strategy for growth. The role of large marine algae in coastal productivity is far more important than has been suspected. Science 182, 975–981.
Seaweeds: their productivity and strategy for growth. The role of large marine algae in coastal productivity is far more important than has been suspected.Crossref | GoogleScholarGoogle Scholar | 17833778PubMed |

Marion, S. R., and Orth, R. J. (2010). Innovative techniques for large‐scale seagrass restoration using Zostera marina (eelgrass) seeds. Restoration Ecology 18, 514–526.
Innovative techniques for large‐scale seagrass restoration using Zostera marina (eelgrass) seeds.Crossref | GoogleScholarGoogle Scholar |

Marshall, K., Joint, I., Callow, M., and Callow, J. (2006). Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microbial Ecology 52, 302–310.
Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza.Crossref | GoogleScholarGoogle Scholar | 16897307PubMed |

Martin, D. M. (2017). Ecological restoration should be redefined for the twenty‐first century. Restoration Ecology 25, 668–673.
Ecological restoration should be redefined for the twenty‐first century.Crossref | GoogleScholarGoogle Scholar | 29400359PubMed |

Martínez, B., Radford, B., Thomsen, M. S., Connell, S. D., Carreño, F., Bradshaw, C. J. A., Fordham, D. A., Russell, B. D., Gurgel, C. F. D., and Wernberg, T. (2018). Distribution models predict large contractions of habitat‐forming seaweeds in response to ocean warming. Diversity & Distributions 24, 1350–1366.
Distribution models predict large contractions of habitat‐forming seaweeds in response to ocean warming.Crossref | GoogleScholarGoogle Scholar |

Marzinelli, E. M., Leong, M. R., Campbell, A. H., Steinberg, P. D., and Vergés, A. (2016). Does restoration of a habitat-forming seaweed restore associated faunal diversity? Restoration Ecology 24, 81–90.
Does restoration of a habitat-forming seaweed restore associated faunal diversity?Crossref | GoogleScholarGoogle Scholar |

Marzinelli, E. M., Qiu, Z., Dafforn, K. A., Johnston, E. L., Steinberg, P. D., and Mayer-Pinto, M. (2018). Coastal urbanisation affects microbial communities on a dominant marine holobiont. Biofilms and Microbiomes 4, 1.
Coastal urbanisation affects microbial communities on a dominant marine holobiont.Crossref | GoogleScholarGoogle Scholar | 29367878PubMed |

Matheson, F. E., Reed, J., Dos Santos, V. M., MacKay, G., and Cummings, V. J. (2017). Seagrass rehabilitation: successful transplants and evaluation of methods at diferent spatial scales. New Zealand Journal of Marine and Freshwater Research 51, 96–109.
Seagrass rehabilitation: successful transplants and evaluation of methods at diferent spatial scales.Crossref | GoogleScholarGoogle Scholar |

McHugh, D. J. (2003). A guide to the seaweed industry. FAO Fisheries Technical Paper number 441, Food and Agriculture Organization of the United Nations, Rome, Italy.

McKay, J. K., Christian, C. E., Harrison, S., and Rice, K. J. (2005). ‘How local is local?’ A review of practical and conceptual issues in the genetics of restoration. Restoration Ecology 13, 432–440.
‘How local is local?’ A review of practical and conceptual issues in the genetics of restoration.Crossref | GoogleScholarGoogle Scholar |

McKenzie, P. F., and Bellgrove, A. (2006). No outbreeding depression at a regional scale for a habitat-forming intertidal alga with limited dispersal. Marine and Freshwater Research 57, 655–663.
No outbreeding depression at a regional scale for a habitat-forming intertidal alga with limited dispersal.Crossref | GoogleScholarGoogle Scholar |

Menz, M. H. M., Dixon, K. W., and Hobbs, R. J. (2013). Hurdles and opportunities for landscape-scale restoration. Science 339, 526–527.
Hurdles and opportunities for landscape-scale restoration.Crossref | GoogleScholarGoogle Scholar |

Merritt, D. J., and Dixon, K. W. (2011). Restoration seed bancks – a matter of scale. Science 332, 424–425.
Restoration seed bancks – a matter of scale.Crossref | GoogleScholarGoogle Scholar | 21512021PubMed |

Mijangos, J. L., Pacioni, C., Spencer, P., and Craig, M. D. (2015). Contribution of genetics to ecological restoration. Molecular Ecology 24, 22–37.
Contribution of genetics to ecological restoration.Crossref | GoogleScholarGoogle Scholar | 25377524PubMed |

Millennium Ecosystem Assessment (2005). Summary for decision makers. In ‘Ecosystems and Human Well-being: Synthesis’. pp. 1–24. (Island Press: Washington DC, USA.)

Morin, P. A., Luikart, G., and Wayne, R. K. (2004). SNPs in ecology, evolution and conservation. Trends in Ecology & Evolution 19, 208–216.
SNPs in ecology, evolution and conservation.Crossref | GoogleScholarGoogle Scholar |

O’Brien, K. R., Waycott, M., Maxwell, P., Kendrick, G. A., Udy, J. W., Fergusun, A. J. P., Kilminster, K., Scanes, P., McKenzie, L. J., McMahon, K., Adams, M. P., Samper-Villarreal, J., Collier, C., Lyons, M., Mumby, P. J., Radke, L., Christianen, M. J. A., and Dennison, W. C. (2018). Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance. Marine Pollution Bulletin 134, 166–176.
Seagrass ecosystem trajectory depends on the relative timescales of resistance, recovery and disturbance.Crossref | GoogleScholarGoogle Scholar | 28935363PubMed |

O’Leary, J. K., Micheli, F., Airoldi, L., and Wong, J. (2017). The resilience of marine ecosystems to climatic disturbances. Bioscience 67, 208.
The resilience of marine ecosystems to climatic disturbances.Crossref | GoogleScholarGoogle Scholar |

On-prom, S. (2014). Community-based mangrove forest management in Thailand: key lesson learned for environmental risk management. In ‘Sustainable Living with Environmental Risks’. (Eds N. Kaneko, S. Yoshiura, and M. Kobayashi.) pp. 87–96. (Springer: Tokyo, Japan.)

Pecl, G. T., Araujo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengard, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., Lenoir, J., Linnetved, H. I., Martin, V. Y., Mccormack, P. C., Mcdonald, J., Mitchell, N. J., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Popova, E., Robinson, S. A., Scheffers, B. R., Shaw, J. D., Sorte, C. J. B., Strugnell, J. M., Sunday, J. M., Tuanmu, M.-N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E., and Williams, S. E. (2017). Biodiversity redistribution under climate change. Science 355, eaai9214.
Biodiversity redistribution under climate change.Crossref | GoogleScholarGoogle Scholar | 28360268PubMed |

Perkol‐Finkel, S., Ferrario, F., Nicotera, V., and Airoldi, L. (2012). Conservation challenges in urban seascapes: promoting the growth of threatened species on coastal infrastructures. Journal of Applied Ecology 49, 1457–1466.
Conservation challenges in urban seascapes: promoting the growth of threatened species on coastal infrastructures.Crossref | GoogleScholarGoogle Scholar |

Perring, M. P., Standish, R. J., Price, J. N., Craig, M. D., Erickson, T. E., Ruthrof, K. X., Whiteley, A. S., Valentine, L. E., and Hobbs, R. J. (2015). Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6, art131.
Advances in restoration ecology: rising to the challenges of the coming decades.Crossref | GoogleScholarGoogle Scholar |

Peters, M. A., Hamilton, D., and Eames, C. (2015). Action on the ground: a review of community environmental groups’ restoration objectives, activities and partnerships in New Zealand. New Zealand Journal of Ecology 39, 179–189.

Pfeiffer, L., Holden, H., and Jackson, E. (2017). Seagrass and aluminium are strange bedfellows: science–art collaboration via the power of steam. In ‘2017 Science, Technology, Engineering Arts and Mathematics (STEAM) Education Proceedings – Hawaii University International Conferences 2017’, 8–10 June 2017, Honolulu, HI, USA. (Hawaii University International Conferences, Science Technology and Engineering, Arts Mathematics and Education.) Available at https://huichawaii.org/wp-content/uploads/2017/09/Pfeiffer-Linda-2017-STEAM-HUIC.pdf [Verified 24 February 2019].

Provost, E. J., Kelaher, B. P., Dworjanyn, S. A., Russel, B. D., Connell, S. D., Ghedini, G., Gillanders, B. M., Figueira, W., and Coleman, M. A. (2017). Climate‐driven disparities among ecological interactions threaten kelp forest persistence. Global Change Biology 23, 353–361.
Climate‐driven disparities among ecological interactions threaten kelp forest persistence.Crossref | GoogleScholarGoogle Scholar | 27392308PubMed |

Qin, S., Lin, H., and Jiange, P. (2012). Advances in genetic engineering of marine algae. Biotechnology Advances 30, 1602–1613.
Advances in genetic engineering of marine algae.Crossref | GoogleScholarGoogle Scholar | 22634258PubMed |

Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D., Fenster, C. B., Lacy, R. C., Sunnucks, P., and Frankham, R. (2018). Call for a paradigm shift in the genetic management of fragmented populations. Conservation Letters 11, e12412.
Call for a paradigm shift in the genetic management of fragmented populations.Crossref | GoogleScholarGoogle Scholar |

Reigersman, C. J. A., Houben, G. F. H., and Havinga, B. (1939). Rapport omtrent den invloed van de wierziekte op den achteruitgang van de wierbedrijven, met Bijlagen. Provinciale Waterstaat in Noord-Holland, Haarlem, Netherlands.

Reusch, T. B. H., Ehlers, A., Hammerli, A., and Worm, B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America 102, 2826–2831.
Ecosystem recovery after climatic extremes enhanced by genotypic diversity.Crossref | GoogleScholarGoogle Scholar |

Rey Benayas, J. M., Newton, A. C., Diaz, A., and Bullock, J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124.
Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 19644076PubMed |

Reynolds, L. K., Mcglathery, K. J., and Waycott, M. (2012). Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS One 7, e38397.
Genetic diversity enhances restoration success by augmenting ecosystem services.Crossref | GoogleScholarGoogle Scholar | 22761681PubMed |

Richardson, B. J., and Lefroy, T. (2016). Restoration dialogues: improving the governance of ecological restoration. Restoration Ecology 24, 668–673.
Restoration dialogues: improving the governance of ecological restoration.Crossref | GoogleScholarGoogle Scholar |

Rinkevich, B. (2014). Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? Current Opinion in Environmental Sustainability 7, 28–36.
Rebuilding coral reefs: does active reef restoration lead to sustainable reefs?Crossref | GoogleScholarGoogle Scholar |

Rosenzweig, M. (2003). ‘Win–Win Ecology, How the Earth’s Species can Survive in the Midst of Human Enterprise.’ (Oxford University Press: Oxford, UK.)

Ruby, E. G., and Nealson, K. H. (1976). Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. The Biological Bulletin 151, 574–586.
Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies.Crossref | GoogleScholarGoogle Scholar | 1016667PubMed |

Sala, E., Boudouresque, C. F., and Harmelin-Vivien, M. (1998). Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82, 425–439.
Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm.Crossref | GoogleScholarGoogle Scholar |

Sanderson, J., Ling, S., Dominguez, J., and Johnson, C. (2016). Limited effectiveness of divers to mitigate ‘barrens’ formation by culling sea urchins while fishing for abalone. Marine and Freshwater Research 67, 84–95.
Limited effectiveness of divers to mitigate ‘barrens’ formation by culling sea urchins while fishing for abalone.Crossref | GoogleScholarGoogle Scholar |

Scanes, P. R., and Phillip, N. (1995). Environmental impact of deepwater discharge of sewage off Sydney, NSW, Australia. Marine Pollution Bulletin 31, 343–346.
Environmental impact of deepwater discharge of sewage off Sydney, NSW, Australia.Crossref | GoogleScholarGoogle Scholar |

Seaman, W. (2007). Artificial habitats and the restoration of degraded marine ecosystems and fisheries. Hydrobiologia 580, 143–155.
Artificial habitats and the restoration of degraded marine ecosystems and fisheries.Crossref | GoogleScholarGoogle Scholar |

Selkoe, K. A., d’Aloia, C. C., Crandall, E. D., Iacchei, M., Liggins, L., Puritz, J. B., von der Heyden, S., and Toonen, R. (2016). A decade of seascape genetics: contribtions to basic and applied marine connectivity. Marine Ecology Progress Series 554, 1–19.
A decade of seascape genetics: contribtions to basic and applied marine connectivity.Crossref | GoogleScholarGoogle Scholar |

Sgrò, C. M., Lowe, A. J., and Hoffmann, A. A. (2011). Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4, 326–337.
Building evolutionary resilience for conserving biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar | 25567976PubMed |

Sharp, K. H., Eam, B., Faulkner, D. J., and Haygood, M. G. (2007). Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Applied and Environmental Microbiology 73, 622–629.
Vertical transmission of diverse microbes in the tropical sponge Corticium sp.Crossref | GoogleScholarGoogle Scholar | 17122394PubMed |

Shears, N. T., and Babcock, R. C. (2003). Continuing trophic cascade effects after 25 years of no-take marine reserve protection. Marine Ecology Progress Series 246, 1–16.
Continuing trophic cascade effects after 25 years of no-take marine reserve protection.Crossref | GoogleScholarGoogle Scholar |

Society for Ecological Restoration (1993). Environmental policies of the society for ecological restoration. Restoration Ecology 1, 206–207.

Spyksma, A. J. P., Shears, N. T., and Taylor, R. B. (2017). Predators indirectly induce stronger prey through a trophic cascade. Proceedings of the Royal Society of London. Series B, Biological Sciences 284, 1866–1874.
Predators indirectly induce stronger prey through a trophic cascade.Crossref | GoogleScholarGoogle Scholar |

Strain, E. M. A., Olabarria, C., Mayer‐Pinto, M., Cumbo, V., Morris, R. L., Bugnot, A. B., Dafforn, K. A., Heery, E., Firth, L. B., Brooks, P. R., and Bishop, M. J. (2018). Eco‐engineering urban infrastructure for marine and coastal biodiversity: which interventions have the greatest ecological benefit? Journal of Applied Ecology 55, 426–441.
Eco‐engineering urban infrastructure for marine and coastal biodiversity: which interventions have the greatest ecological benefit?Crossref | GoogleScholarGoogle Scholar |

Teagle, H., Hawkins, S. J., Moore, P. J., and Smale, D. A. (2017). The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology 492, 81–98.
The role of kelp species as biogenic habitat formers in coastal marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Thompson, L. R., Sanders, J. G., Mcdonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Zech Xu, Z., Jiang, L., Haroon, M. F., Kanbar, J., Zhu, Q., Jin Song, S., Kosciolek, T., Bokulich, N. A., Lefler, J., Brislawn, C. J., Humphrey, G., Owens, S. M., Hampton-Marcell, J., Berg-Lyons, D., McKenzie, V., Fierer, N., Fuhrman, J. A., Clauset, A., Stevens, R. L., Shade, A., Pollard, K. S., Goodwin, K. D., Jansson, J. K., Gilbert, J. A., Knight, R., Earth Microbiome Project Consortium (2017). A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457–463.
A communal catalogue reveals earth’s multiscale microbial diversity.Crossref | GoogleScholarGoogle Scholar | 29088705PubMed |

Timpane-Padgham, B. L., Beechie, T., and Klinger, T. (2017). A systematic review of ecological attributes that confer resilience to climate change in environmental restoration. PLoS One 12, e0173812.
A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.Crossref | GoogleScholarGoogle Scholar | 28301560PubMed |

Tol, S. J., Jarvis, J. C., York, P. H., Grech, A., Congdon, B. C., and Coles, R. G. (2017). Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Scientific Reports 7, 4458.
Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores.Crossref | GoogleScholarGoogle Scholar | 28667257PubMed |

Trevathan-Tackett, S. M., Kelleway, J., Macreadie, P. I., Beardall, J., Ralph, P., and Bellgrove, A. (2015). Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96, 3043–3057.
Comparison of marine macrophytes for their contributions to blue carbon sequestration.Crossref | GoogleScholarGoogle Scholar | 27070023PubMed |

Tuya, F., Vila, F., Bergasa, O., Zarranz, M., Espino, F., and Robaina, R. R. (2017). Artificial seagrass leaves shield transplanted seagrass seedlings and increase their survivorship. Aquatic Botany 136, 31–34.
Artificial seagrass leaves shield transplanted seagrass seedlings and increase their survivorship.Crossref | GoogleScholarGoogle Scholar |

Tylianakis, J. M., Didham, R. K., Bascompte, J., and Wardle, D. A. (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters 11, 1351–1363.
Global change and species interactions in terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar | 19062363PubMed |

van Katwijk, M. M., Bos, A. R., de Jonge, V. N., Hanssen, L. S. A. M., Hermus, D. C. R., and de Jong, D. J. (2009). Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects. Marine Pollution Bulletin 58, 179–188.
Guidelines for seagrass restoration: importance of habitat selection and donor population, spreading of risks, and ecosystem engineering effects.Crossref | GoogleScholarGoogle Scholar | 19131078PubMed |

van Katwijk, M., Thorhaug, A., Marba, N., Orth, R., Duarte, C., Kendrick, G., Althuizen, I. H. J., Balestri, E., Bernard, G., Cambridge, M., Cunha, A., Durance, C., Giesen, W., Han, Q., Hosokawa, S., Kiswara, W., Komatsu, T., Lardicci, C., Lee, K.-S., and Verduin, J. (2016). Global analysis of seagrass restoration: the importance of large-scale planting. Journal of Applied Ecology 53, 567–578.
Global analysis of seagrass restoration: the importance of large-scale planting.Crossref | GoogleScholarGoogle Scholar |

van Oppen, M. J. H., Oliver, J. K., Putnam, H. M., and Gates, R. D. (2015). Building coral reef resilience through assisted evolution. Proceedings of the National Academy of Sciences of the United States of America 112, 2307–2313.
Building coral reef resilience through assisted evolution.Crossref | GoogleScholarGoogle Scholar |

Vander Mijnsbrugge, K., Bischoff, A., and Smith, B. (2010). A question of origin: where and how to collect seed for ecological restoration. Basic and Applied Ecology 11, 300–311.
A question of origin: where and how to collect seed for ecological restoration.Crossref | GoogleScholarGoogle Scholar |

Vasquez, J. A., and McPeak, R. H. (1998). A new tool for kelp restoration. California Fish and Game 84, 149–158.

Verduin, J. J., Paling, E. I., van Keulen, M., and Rivers, L. E. (2012). Recovery of donor meadows of Posidonia sinuosa and Posidonia australis contributes to sustainable seagrass transplantation. International Journal of Ecology 2012, 837317.
Recovery of donor meadows of Posidonia sinuosa and Posidonia australis contributes to sustainable seagrass transplantation.Crossref | GoogleScholarGoogle Scholar |

Verdura, J., Sales, M., Ballesteros, E., Cefalì, M. A., and Cebrian, E. (2018). Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment. Frontiers of Plant Science 9, 1832.
Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment.Crossref | GoogleScholarGoogle Scholar |

Vergés, A., Steinberg, P. D., Hay, M. E., Poore, A. G. B., Campbell, A. H., Ballesteros, E., Heck, K. L., Booth, D. J., Coleman, M. A., Feary, D. A., Figueira, W., Langlois, T., Marzinelli, E. Z., Mizerek, T., Mumby, P. J., Nakamura, Y., Roughan, M., van Sebille, E., Sen Gupta, A., Smale, D. A., Tomas, F., Wernberg, T., and Wilson, S. K. (2014). The tropicalisation of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20140846.
The tropicalisation of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.Crossref | GoogleScholarGoogle Scholar |

Vergés, A., Doropoulos, C., Malcolm, H. A., Skye, M., Garcia-Pizá, M., Marzinelli, E. M., Campbell, A. H., Ballesteros, E., Hoey, A. S., Vila-Concejo, A., Bozec, Y.-M., and Steinberg, P. D. (2016). Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proceedings of the National Academy of Sciences of the United States of America 113, 13791–13796.
Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp.Crossref | GoogleScholarGoogle Scholar | 27849585PubMed |

Watanuki, A., Aota, T., Otsuka, E., Kawai, T., Iwahashi, Y., Kuwahara, H., and Fujita, D. (2010). Restoration of kelp beds on an urchin barren: removal of sea urchins by citizen divers in southwestern Hokkaido. Bulletin of Fisheries Research 32, 83–87.

Water, S. (2017). Sydney Water annual report 2016–17. (Sydney Water.) Available at https://www.sydneywater.com.au/web/groups/publicwebcontent/documents/document/zgrf/mty4/~edisp/dd_168714.pdf [Verified 24 February 2019].

Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M., Jeandel, C., Leinfelder, R., Mcneill, J. R., Richter, D. D., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N., and Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, aad2622.
The Anthropocene is functionally and stratigraphically distinct from the Holocene.Crossref | GoogleScholarGoogle Scholar | 26744408PubMed |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 19587236PubMed |

Webster, M. S., Colton, M. A., Darling, E. S., Armstrong, J., Pinsky, M. L., Knowlton, N., and Schindler, D. E. (2017). Who should pick the winners of climate change? Trends in Ecology & Evolution 32, 167–173.
Who should pick the winners of climate change?Crossref | GoogleScholarGoogle Scholar |

Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D., Sunnucks, P., Breed, M. F., James, E. A., and Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–725.
Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar | 22287981PubMed |

Wernberg, T., Thomsen, M. S., Tuya, F., Kendrick, G. A., Staehr, P. A., and Toohey, B. D. (2010). Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecology Letters 13, 685–694.
Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future.Crossref | GoogleScholarGoogle Scholar | 20412279PubMed |

Wernberg, T., Coleman, M., Bennett, S., Thomsen, M. S., Tuya, F., and Kelaher, B. P. (2018). Genetic diversity and kelp forest vulnerability to climatic stress. Scientific Reports 8, 1851.
Genetic diversity and kelp forest vulnerability to climatic stress.Crossref | GoogleScholarGoogle Scholar | 29382916PubMed |

Westermeier, R., Patiño, D., Murúa, P., Muñoz, L., Ruiz, A., and Atero, C. (2013). Uso de algas pardas de cultivo para la biorremediación del ambiente costero en la Bahía de Chañaral. Informe final FIC 2011 33-01-211. (Universidad Austral de Chile: Copiapó, Chile.) Available at https://goreatacama.gob.cl/wp-content/uploads/08-10-2013_17-36-24_10488986.pdf [Verified 18 February 2019].

Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., LeRoy, C. J., Lonsdorf, E. V., Allan, G. J., DiFazio, S. P., Potts, B. M., Fishcer, D. G., Lindroth, R. L., Marks, J. C., Hart, S. C., Wimp, G. M., and Wooley, S. C. (2006). A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews – Genetics 7, 510–523.
A framework for community and ecosystem genetics: from genes to ecosystems.Crossref | GoogleScholarGoogle Scholar | 16778835PubMed |

Wiens, J. A., and Hobbs, R. J. (2015). Integrating conservation and restoration in a changing world. Bioscience 65, 302–312.
Integrating conservation and restoration in a changing world.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., Shoo, L. O., Isaac, J. L., Hoffmann, A. A., and Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6, e325.
Towards an integrated framework for assessing the vulnerability of species to climate change.Crossref | GoogleScholarGoogle Scholar | 19108608PubMed |

Williams, S. L., Ambo-Rappe, R., Sur, C., Abbott, J. M., and Limbong, S. R. (2017). Diversity enhances restoration. Proceedings of the National Academy of Sciences of the United States of America 114, 11986–11991.
Diversity enhances restoration.Crossref | GoogleScholarGoogle Scholar | 29078320PubMed |

Wilson, A. M. W., and Forsyth, C. (2018). Restoring near-shore marine ecosystems to enhance climate security for island ocean states: aligning international processes and local practices. Marine Policy 93, 284–294.
Restoring near-shore marine ecosystems to enhance climate security for island ocean states: aligning international processes and local practices.Crossref | GoogleScholarGoogle Scholar |

Wilson, K. A., Lulow, M., Burger, J., Fang, Y. C., Andersen, C., Olson, D., O’connell, M., and Mcbride, M. F. (2011). Optimal restoration: accounting for space, time and uncertainty. Journal of Applied Ecology 48, 715–725.
Optimal restoration: accounting for space, time and uncertainty.Crossref | GoogleScholarGoogle Scholar |

Wylie, L., Sutton-Grier, A. E., and Moore, A. (2016). Keys to successful carbon projects: lessons learned from global case studies. Marine Policy 65, 76–84.
Keys to successful carbon projects: lessons learned from global case studies.Crossref | GoogleScholarGoogle Scholar |

Yoon, J. T., Sun, S. M., and Chung, G. (2014). Sargassum bed restoration by transplantation of germlings grown under protective mesh cage. Journal of Applied Phycology 26, 505–509.
Sargassum bed restoration by transplantation of germlings grown under protective mesh cage.Crossref | GoogleScholarGoogle Scholar |

Zalasiewicz, J., Williams, M., Smith, A., Barry, T. L., Coe, A. L., Bown, P. R., Brenchley, P., Cantrill, D., Gale, A., Gibbard, P., Gregory, F. J., Hounslow, M. W., Kerr, A. C., Pearson, P., Knox, R., Powell, J., Waters, C., Marshall, J., Oates, M., Rawson, P., and Stone, P. (2008). Are we now living in the Anthropocene? GSA Today 18, 4–8.
Are we now living in the Anthropocene?Crossref | GoogleScholarGoogle Scholar |

Zerebecki, R. A., Crutsinger, G. M., Hughes, A. R., and Dam, N. (2017). Spartina alterniflora genotypic identity affects plant and consumer responses in an experimental marsh community. Journal of Ecology 105, 661–673.
Spartina alterniflora genotypic identity affects plant and consumer responses in an experimental marsh community.Crossref | GoogleScholarGoogle Scholar |

Zhang, Y., Cioffi, W., Cope, R., Daleo, P., Heywood, E., Hoyt, C., Smith, C., and Silliman, B. (2018). A Global synthesis reveals gaps in coastal habitat restoration research. Sustainability 10, 1040.
A Global synthesis reveals gaps in coastal habitat restoration research.Crossref | GoogleScholarGoogle Scholar |