Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Determining barotrauma in the Pictus catfish, Pimelodus pictus, experimentally exposed to simulated hydropower turbine passage

Bernardo V. Beirão A B D , Luiz G. M. Silva https://orcid.org/0000-0002-2329-5601 A C , Richard S. Brown B and Ricardo W. Walker B
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graduação em Tecnologias para o Desenvolvimento Sustentável (PPGTDS), Universidade Federal de São João del-Rei (UFSJ), Rodovia MG 443, quilômetro 7, 36.420-000, Ouro Branco, MG, Brazil.

B Pacific Northwest National Laboratory, Ecology Group, 902 Battelle Boulevard, PO Box 999, Richland, WA 99352, USA.

C Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia.

D Corresponding author. Email: bvbeirao@gmail.com

Marine and Freshwater Research 69(12) 1913-1921 https://doi.org/10.1071/MF18142
Submitted: 1 April 2018  Accepted: 1 August 2018   Published: 22 October 2018

Abstract

Hydropower development poses severe threats to the aquatic diversity and ecosystem services. One such threat is the exposure of fish to extreme conditions within hydropower facilities. Fish may suffer rapid decompression when passing through turbines or when entering the draft tubes, which can lead to barotrauma and mortality. We aimed to evaluate the effects of rapid decompression on the Amazonian benthic species Pimelodus pictus (Pictus catfish), by simulating in hypo–hyperbaric chambers. The most frequent injuries in Pictus catfish exposed to simulated rapid decompression were swim-bladder rupture, intestine rupture, internal haemorrhage and embolism. The occurrence and magnitude of internal haemorrhaging and emboli were related to the ratio of pressure change and the decompression timespan, whereas swim-bladder rupture occurred even at relatively low ratios. Emboli was present almost entirely among fish with a ruptured swim bladder. Importantly, all fish were negatively buoyant before exposure to decompression, posing challenges to data analysis. Therefore, barotrauma studies with benthic fish species are deemed to be challenging and are likely to require the use of complementary approaches. Research is needed to understand the state of buoyancy of benthic fish in the wild and to develop methods to accurately replicate these in a controlled testing environment.

Additional keywords: benthic species, bioengineering, biophysics, entrainment.


References

Agostinho, A. A., Gomes, L. C., and Pelicice, F. M. (2007). ‘Ecologia e Manejo de Recursos Pesqueiros em Reservatórios do Sudeste do Brasil.’ (Eduem: Maringá, Brazil.)

Agostinho, A. A., Gomes, L. C., Santos, N. C. L., Ortega, J. C. G., and Pelicice, F. M. (2016). Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173, 26–36.
Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management.Crossref | GoogleScholarGoogle Scholar |

Andrade, F., Prado, I. G., Loures, R. C., and Godinho, A. L. (2012). Evaluation of techniques used to protect tailrace fishes during turbine maneuvers at Tres Marias Dam, Brazil. Neotropical Ichthyology 10, 723–730.
Evaluation of techniques used to protect tailrace fishes during turbine maneuvers at Tres Marias Dam, Brazil.Crossref | GoogleScholarGoogle Scholar |

Aquino, D. N. (2016). Avaliação histológica da bexiga de peixes das ordens Perciformes e Characiformes: contribuição para o entendimento dos efeitos de descompressão em peixes. M.Sc. Thesis, Universidade Federal de São João del-Rei, Ouro Branco, Brazil.

Baumgartner, L. J., Reynoldson, N., and Gilligan, D. M. (2006). Mortality of larval Murray cod (Maccullochella peelii peelii) and golden perch (Macquaria ambigua) associated with passage through two types of low-head weirs. Marine and Freshwater Research 57, 187–191.
Mortality of larval Murray cod (Maccullochella peelii peelii) and golden perch (Macquaria ambigua) associated with passage through two types of low-head weirs.Crossref | GoogleScholarGoogle Scholar |

Baumgartner, L. J., Daniel Deng, Z., Thorncraft, G., Boys, C. A., Brown, R. S., Singhanouvong, D., and Phonekhampeng, O. (2014). Perspective: towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin. Journal of Renewable and Sustainable Energy 6, 012301.
Perspective: towards environmentally acceptable criteria for downstream fish passage through mini hydro and irrigation infrastructure in the Lower Mekong River Basin.Crossref | GoogleScholarGoogle Scholar |

Beirão, B. V. (2015). Avaliação e desenvolvimento de método para estudo de barotrauma em peixes em turbinas de usinas hidrelétricas. M.Sc. Thesis, Universidade Federal de São João del-Rei, Ouro Branco, Brazil.

Beirão, B. V., Marciano, N. C. B., Dias, L. S., Falcão, R. C., Dias, E. W., Fabrino, D. L., Martinez, C. B., Silva, L. G. M., Walker, R., Brown, R. S., and Deng, Z. D. (2015). Barotrauma em peixes em usinas hidrelétricas: ferramentas para o estudo. Boletim – Sociedade Brasileira de Ictiologia 115, 26–36.

Bellgraph, B. J., Brown, R. S., Stephenson, J. R., Welch, A. E., Deters, K. A., and Carlson, T. J. (2008). Healing rate of swim bladders in rainbow trout. Transactions of the American Fisheries Society 137, 1791–1794.
Healing rate of swim bladders in rainbow trout.Crossref | GoogleScholarGoogle Scholar |

Birindelli, J. L. O., Sousa, L. M., and Sabaj Pérez, M. H. (2009). Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae). Proceedings. Academy of Natural Sciences of Philadelphia 158, 261–296.
Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae).Crossref | GoogleScholarGoogle Scholar |

Boys, C. A., Robinson, W., Miller, B., Pflugrath, B., Baumgartner, L. J., Navarro, A., Brown, R., and Deng, Z. (2016a). How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression. Biology Open 5, 786–793.
How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression.Crossref | GoogleScholarGoogle Scholar |

Boys, C. A., Robinson, W., Miller, B., Pflugrath, B., Baumgartner, L. J., Navarro, A., Brown, R., and Deng, Z. (2016b). A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure. Journal of Fish Biology 88, 1677–1692.
A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure.Crossref | GoogleScholarGoogle Scholar |

Brown, R. S., Carlson, T. J., Welch, A. E., Stephenson, J. R., Abernethy, C. S., Ebberts, B. D., Langeslay, M. J., Ahmann, M. L., Feil, D. H., Skalski, J. R., and Townsend, R. L. (2009). Assessment of barotrauma from rapid decompression of depth-acclimated juvenile Chinook salmon bearing radiotelemetry transmitters. Transactions of the American Fisheries Society 138, 1285–1301.
Assessment of barotrauma from rapid decompression of depth-acclimated juvenile Chinook salmon bearing radiotelemetry transmitters.Crossref | GoogleScholarGoogle Scholar |

Brown, R. S., Carlson, T. J., Gingerich, A. J., Stephenson, J. R., Pflugrath, B. D., Welch, A. E., Langeslay, M. J., Ahmann, M. L., Johnson, R. L., Skalski, J. R., Seaburg, A. G., and Townsend, R. L. (2012a). Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage. Transactions of the American Fisheries Society 141, 147–157.
Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage.Crossref | GoogleScholarGoogle Scholar |

Brown, R. S., Pflugrath, B. D., Colotelo, A. H., Brauner, C. J., Carlson, T. J., Deng, Z. D., and Seaburg, A. G. (2012b). Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law. Fisheries Research 121–122, 43–50.
Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law.Crossref | GoogleScholarGoogle Scholar |

Brown, R. S., Cook, K. V., Pflugrath, B. D., Rozeboom, L. L., Johnson, R. C., McLellan, J. G., Linley, T. J., Gao, Y., Baumgartner, L. J., Dowell, F. E., Miller, E. A., and White, T. A. (2013). Vulnerability of larval and juvenile white sturgeon to barotrauma: can they handle the pressure? Conservation Physiology 1, cot019.
Vulnerability of larval and juvenile white sturgeon to barotrauma: can they handle the pressure?Crossref | GoogleScholarGoogle Scholar |

Brown, R. S., Colotelo, A. H., Pflugrath, B. D., Boys, C. A., Baumgartner, L. J., Deng, Z. D., Silva, L. G. M., Brauner, C. J., Mallen-Cooper, M., Phonekhampeng, O., Thorncraft, G., and Singhanouvong, D. (2014). Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources. Fisheries 39, 108–122.
Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources.Crossref | GoogleScholarGoogle Scholar |

Brown, R. S., Walker, R. W., and Stephenson, J. R. (2016). ‘A Preliminary Assessment of Barotrauma Injuries and Acclimation Studies for Three Fish Species. Number PNNL-24720.’ (Pacific Northwest National Laboratory: Richland, WA, USA.)

Čada, G., Loar, J., Garrison, L., Fisher, R., and Neitzel, D. (2006). Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses. Environmental Management 37, 898–906.
Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses.Crossref | GoogleScholarGoogle Scholar |

Carvalho, G. L., Fonseca, L. R. O., Martins, D. S., Menezes, S. S., and Silva, L. G. M. (2017). Usinas hidrelétricas e mortandade de peixes: desenvolvimento de tecnologia para estudo e mitigação do impacto visando a sustentabilidade no setor elétrico. In ‘Prêmio Odebrecht para o Desenvolvimento Sustentável: Compilação dos Melhores Projetos’, Vol. 1. (Eds C. Pires, C. Vilela, and S. Leão.) pp. 70–86. (Odebrecht: São Paulo, Brazil.)

Colotelo, A. H., Pflugrath, B. D., Brown, R. S., Brauner, C. J., Mueller, R. P., Carlson, T. J., Deng, Z. D., Ahmann, M. L., and Trumbo, B. A. (2012). The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities. Fisheries Research 129–130, 17–20.
The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities.Crossref | GoogleScholarGoogle Scholar |

Conway, K. W., Britz, R., and Siegel, D. S. (2014). Different on the inside: extreme swimbladder sexual dimorphism in the South Asian torrent minnows. Biol Lett 10, 20140348.
Different on the inside: extreme swimbladder sexual dimorphism in the South Asian torrent minnows.Crossref | GoogleScholarGoogle Scholar |

Deng, Z., Carlson, T. J., Duncan, J. P., and Richmond, M. C. (2007). Six-degree-of-freedom sensor fish design and instrumentation. Sensors 7, 3399–3415.
Six-degree-of-freedom sensor fish design and instrumentation.Crossref | GoogleScholarGoogle Scholar |

Deng, Z., Carlson, T. J., Duncan, J. P., Richmond, M. C., and Dauble, D. D. (2010). Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam. Journal of Renewable and Sustainable Energy 2, 053104.
Use of an autonomous sensor to evaluate the biological performance of the advanced turbine at Wanapum Dam.Crossref | GoogleScholarGoogle Scholar |

Fänge, R. (1983). Gas exchange in fish swim bladder. Reviews of Physiology, Biochemistry and Pharmacology 97, 111–158.
Gas exchange in fish swim bladder.Crossref | GoogleScholarGoogle Scholar |

Farfan, J., and Breyer, C. (2017). Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. Journal of Cleaner Production 141, 370–384.
Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator.Crossref | GoogleScholarGoogle Scholar |

Giraldo, A. (2014). Deslocamentos e mortalidade de peixes nos rios Grande e Paranaíba, MG. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Mattson, N. S., and Riple, T. H. (1989). Metomidae, a better anesthetic for cod (Gadus morhua) in comparison with benzocaine, MS-222, chlorobutanol, and phenoxyethanol. Aquaculture 83, 89–94.
Metomidae, a better anesthetic for cod (Gadus morhua) in comparison with benzocaine, MS-222, chlorobutanol, and phenoxyethanol.Crossref | GoogleScholarGoogle Scholar |

Nieminen, E., Hyytiäinen, K., and Lindroos, M. (2017). Economic and policy considerations regarding hydropower and migratory fish. Fish and Fisheries 18, 54–78.
Economic and policy considerations regarding hydropower and migratory fish.Crossref | GoogleScholarGoogle Scholar |

Pflugrath, B. D., Brown, R. S., and Carlson, T. J. (2012). Maximum neutral buoyancy depth of juvenile Chinook salmon: implications for survival during hydroturbine passage. Transactions of the American Fisheries Society 141, 520–525.
Maximum neutral buoyancy depth of juvenile Chinook salmon: implications for survival during hydroturbine passage.Crossref | GoogleScholarGoogle Scholar |

Poff, N. L., and Olden, J. D. (2017). Can dams be designed for sustainability? Science 358, 1252–1253.
Can dams be designed for sustainability?Crossref | GoogleScholarGoogle Scholar |

Pompeu, P. S., Horta, L. F. M., and Martinez, C. B. (2009). Evaluation of the effects of pressure gradients on four Brazilian freshwater fish species. Brazilian Archives of Biology and Technology 52, 111–118.
Evaluation of the effects of pressure gradients on four Brazilian freshwater fish species.Crossref | GoogleScholarGoogle Scholar |

Pracheil, B. M., DeRolph, C. R., Schramm, M. P., and Bevelhimer, M. S. (2016). A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage. Reviews in Fish Biology and Fisheries 26, 153–167.
A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage.Crossref | GoogleScholarGoogle Scholar |

Reis, R. E., Albert, J. S., Di Dario, F., Mincarone, M. M., Petry, P., and Rocha, L. A. (2016). Fish biodiversity and conservation in South America. Journal of Fish Biology 89, 12–47.
Fish biodiversity and conservation in South America.Crossref | GoogleScholarGoogle Scholar |

Sabo, J. L., Ruhi, A., Holtgrieve, G. W., Elliott, V., Arias, M. E., Ngor, P. B., Rasanen, T. A., and Nam, S. (2017). Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358, eaao1053.
Designing river flows to improve food security futures in the Lower Mekong Basin.Crossref | GoogleScholarGoogle Scholar |

Silva, L. G. M., Beirão, B. V., Falcão, R. C., Castro, A. L. F., and Dias, E. W. (2018). It’s a catfish! Novel approaches are needed to study the effects of rapid decompression on benthic species. Marine and Freshwater Research 69, .
It’s a catfish! Novel approaches are needed to study the effects of rapid decompression on benthic species.Crossref | GoogleScholarGoogle Scholar |

Stephenson, J. R., Gingerich, A. J., Brown, R. S., Pflugrath, B. D., Deng, Z., Carlson, T. J., Langeslay, M. J., Ahmann, M. L., Johnson, R. L., and Seaburg, A. G. (2010). Assessing barotrauma in neutrally and negatively buoyant juvenile salmonids exposed to simulated hydro-turbine passage using a mobile aquatic barotrauma laboratory. Fisheries Research 106, 271–278.
Assessing barotrauma in neutrally and negatively buoyant juvenile salmonids exposed to simulated hydro-turbine passage using a mobile aquatic barotrauma laboratory.Crossref | GoogleScholarGoogle Scholar |

Suzuki, F. M., Dunham, J. B., Silva, L. G. M., Alves, C. B. M., and Pompeu, P. S. (2017). Factors influencing movements of two migratory fishes within the tailrace of a large Neotropical dam and their implications for hydropower impacts. River Research and Applications 33, 514–523.
Factors influencing movements of two migratory fishes within the tailrace of a large Neotropical dam and their implications for hydropower impacts.Crossref | GoogleScholarGoogle Scholar |

Trumbo, B. A., Ahmann, M. L., Renholds, J. F., Brown, R. S., Colotelo, A. H., and Deng, Z. D. (2014). Improving hydroturbine pressures to enhance salmon passage survival and recovery. Reviews in Fish Biology and Fisheries 24, 955–965.
Improving hydroturbine pressures to enhance salmon passage survival and recovery.Crossref | GoogleScholarGoogle Scholar |

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature 467, 555–561.
Global threats to human water security and river biodiversity.Crossref | GoogleScholarGoogle Scholar |

Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I. G., Darwall, W., Lujan, N. K., Harrison, I., Stiassny, M. L., Silvano, R. A., Fitzgerald, D. B., Pelicice, F. M., Agostinho, A. A., Gomes, L. C., Albert, J. S., Baran, E., Petrere, M., Zarfl, C., Mulligan, M., Sullivan, J. P., Arantes, C. C., Sousa, L. M., Koning, A. A., Hoeinghaus, D. J., Sabaj, M., Lundberg, J. G., Armbruster, J., Thieme, M. L., Petry, P., Zuanon, J., Torrente Vilara, G., Snoeks, J., Ou, C., Rainboth, W., Pavanelli, C. S., Akama, A., van Soesbergen, A., and Saenz, L. (2016). Development and environment. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129.
Development and environment. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong.Crossref | GoogleScholarGoogle Scholar |

Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., and Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences 77, 161–170.
A global boom in hydropower dam construction.Crossref | GoogleScholarGoogle Scholar |

Zhou, Y., Hejazi, M., Smith, S., Edmonds, J., Li, H., Clarke, L., Calvin, K., and Thomson, A. (2015). A comprehensive view of global potential for hydro-generated electricity. Energy & Environmental Science 8, 2622–2633.
A comprehensive view of global potential for hydro-generated electricity.Crossref | GoogleScholarGoogle Scholar |