Fish injury and mortality at pumping stations: a comparison of conventional and fish-friendly pumps
B. M. Bierschenk A , J. Pander A , M. Mueller A and J. Geist A BA Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 18-22, D-85350 Freising, Germany.
B Corresponding author. Email: geist@tum.de
Marine and Freshwater Research 70(3) 449-458 https://doi.org/10.1071/MF18116
Submitted: 22 March 2018 Accepted: 27 July 2018 Published: 15 October 2018
Abstract
Pumping of water during floods from hinterland drainage systems into the main river poses a health risk to fishes and comparative studies are crucial to identify the most fish-friendly pump designs and operations. We investigated the effects on fish health of pump passages through four conventional and one ‘fish-friendly’ pump. All pump types caused external fish injuries leading to direct and delayed mortality. Immediate mortality and injury intensity increased with revolutions per minute (rpm) and differed significantly (P < 0.05) between pump types. At the ‘fish-friendly’ Pentair pump (Fairbanks Nijhuis, London, UK), higher numbers of injuries resulting from blunt force (e.g. haemorrhage, scale loss and fin tears) were detected than at the conventional pumps, potentially due to the differences in blade design. The Köster pump (Köster, Heide, Germany) at low rpm proved to be similarly fish friendly as the specially developed fish-friendly Pentair pump due to the low number of entrained fishes. As a measure to reduce potential damaging to fishes, the pumps should run on low rpm as often as possible. This lowers the risk of collision with machine parts and hence mortality rate, as well as the suction effects see at high rpm. After long periods in an anergic state, pumps should generally run on low rpm before changing to higher rates.
Additional keywords: dyke, fish conservation, fish damage, fish population decline, flood protection, Halberg pump, Pentair pump, screening, Thyssen pump.
References
Abernethy, C. S., Amidan, B. G., and Čada, G. F. (2001). Laboratory studies of the effects of pressure and dissolved gas supersaturation on turbine-passed fish. PNNL-13470. Pacific Northwest National Laboratory, Richland, WA, USA.Adam, B., Schürmann, M., and Schwevers, U. (2013). ‘Zum Umgang mit aquatischen Organismen: Versuchstierkundliche Grundlagen.’ (Springer Spektrum: Wiesbaden, Germany.)
Baumgartner, L. J., Reynoldson, N. K., Cameron, L., and Stanger, J. G. (2009). Effects of irrigation pumps on riverine fish. Fisheries Management and Ecology 16, 429–437.
| Effects of irrigation pumps on riverine fish.Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Pflugrath, B. D., Colotelo, A. H., Brauner, C. J., Carlson, T. J., Deng, Z. D., and Seaburg, A. G. (2012). Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law. Fisheries Research 121–122, 43–50.
| Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law.Crossref | GoogleScholarGoogle Scholar |
Buysse, D., Baeyens, R., Stevens, M., Mouton, A., Gelaude, E., Jacobs, Y., Martens, S., Van den Neucker, T., and Coeck, J. (2011) Fish mortality caused by pumping stations – focus on European eel. Available at http://www.scaldwin.org/project-NL/documenten/presentation-fish-mortality-caused-by-pumping-stations-focus-on-european-eel/view [Verified 12 January 2018].
Buysse, D., Mouton, A. M., Stevens, M., den Neucker, T., and Coeck, J. (2014). Mortality of European eel after downstream migration through two types of pumping stations. Fisheries Management and Ecology 21, 13–21.
| Mortality of European eel after downstream migration through two types of pumping stations.Crossref | GoogleScholarGoogle Scholar |
Čada, G. F., Garrison, L., and Fisher, R. (2007). Determining the effect of shear stress on fish mortality during turbine passage. Hydro Review 26, 52–59.
Clarke, K. R., and Warwick, R. M. (2014). ‘Change in Marine Communities: an Approach to Statistical Analysis and Interpretation’, 3rd edn. (PRIMER-E: Plymouth, UK.)
Clarke, K. R., Somerfield, P. J., and Chapman, M. G. (2006). On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330, 55–80.
| On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages.Crossref | GoogleScholarGoogle Scholar |
Council of the European Communities (2000). Directive 2000/60/EC. Establishing a framework for community action in the field of water policy. Official Journal of the European Communities – Legislation 327, 1–73.
Dedual, M. (2007). Survival of juvenile rainbow trout passing through a Francis turbine. North American Journal of Fisheries Management 27, 181–186.
| Survival of juvenile rainbow trout passing through a Francis turbine.Crossref | GoogleScholarGoogle Scholar |
Deng, Z., Guensch, G. R., McKinstry, C. A., Mueller, R. P., Dauble, D. D., and Richmond, M. C. (2005). Evaluation of fish-injury mechanisms during exposure to turbulent shear flow. Canadian Journal of Fisheries and Aquatic Sciences 62, 1513–1522.
| Evaluation of fish-injury mechanisms during exposure to turbulent shear flow.Crossref | GoogleScholarGoogle Scholar |
Deng, Z. D., Lu, J., Myjak, M. J., Martinez, J. J., Tian, C., Morris, S. J., Carlson, T. J., Zhou, D., and Hou, H. (2014). Design and implementation of a new autonomous sensor fish to support advanced hydropower development. The Review of Scientific Instruments 85, 115001.
| Design and implementation of a new autonomous sensor fish to support advanced hydropower development.Crossref | GoogleScholarGoogle Scholar |
Ebel, G. (2013). ‘Fischschutz und Fischabstieg an Wasserkraftanlagen–Handbuch Rechen- und Bypasssysteme. Ingenieurbiologische Grundlagen, Modellierung und Prognose, Bemessung und Gestaltung’, 1st edn. (Büro für Gewässerökologie und Fischereibiologie Dr Ebel, Halle (Saale): Germany.)
European Parliament (2010). Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union 276, 33–77.
Germonpré, E., Denayer, B., Belpaire, C., and Ollevier, F. (1994). Inventarisatie van pompgemalen in het Vlaamse gewest en preliminair onderzoek naar de schade van diverse pomptypes op vissen na gedwongen blootstelling. Report IBW.Wb.V.R.94.21, Instituut voor Bosbouw en Wildbeheer, Brussel, Belgium.
Gloss, S. P., and Wahl, J. R. (1983). Mortality of juvenile salmonids passing through Ossberger crossflow turbines at small-scale hydroelectric sites. Transactions of the American Fisheries Society 112, 194–200.
| Mortality of juvenile salmonids passing through Ossberger crossflow turbines at small-scale hydroelectric sites.Crossref | GoogleScholarGoogle Scholar |
Hadderingh, R. H. (1979). Fish intake mortality at power stations – the problem and its remedy. Hydrological Bulletin 13, 83–93.
| Fish intake mortality at power stations – the problem and its remedy.Crossref | GoogleScholarGoogle Scholar |
Helfrich, L. A., Bark, R., Liston, C. R., Weigmann, D. L., and Mefford, B. (2004). Live transport of striped bass and rainbow trout using a Hidrostal pump. Journal of the World Aquaculture Society 35, 268–273.
| Live transport of striped bass and rainbow trout using a Hidrostal pump.Crossref | GoogleScholarGoogle Scholar |
Jackson, D. (2014). Implications of the eel regulations on the design of pumping plants. In ‘International Fish Screening Techniques’. (Eds A. W. H. Turnpenny and R. A. Horsfield.) pp. 67–78. (WIT Press: Southampton, UK.)
Jaeggi, M. N. R. (1989) Channel engineering and channel erosion. In ‘Alternatives in Regulated River Management’. (Eds J. A. Gore and G. E. Petts.) pp. 163–184. (CRC Press: Boca Raton, FL, USA.)
Killgore, J. K., Maynord, S. T., Chan, M. D., and Morgan, R. P. (2001). Evaluation of propeller-induced mortality on early life stages of selected fish species. North American Journal of Fisheries Management 21, 947–955.
| Evaluation of propeller-induced mortality on early life stages of selected fish species.Crossref | GoogleScholarGoogle Scholar |
König, G., and Wittig, S. (2005). Die Unterweserregion als Natur-, Lebens- und Wirtschaftsraum: eine Bestandsaufnahme. In ‘Klimawandel und Küste – Die Zukunft der Unterweserregion’. (Eds B. Schuchardt and M. Schirmer.) pp. 23–48. (Springer: Berlin, Germany.)
Kruitwagen, G., Klinge, M., and Manshnaden, G. A. M. (2006). Opening eerste vispassage in een gemaal. HO 39, 19.
Lange, M. C., and Merkx, J. C. A. (2005). Experimentele inventarisatie van visschade bij gemalen. Report VA2005_01, VisAdvies BV, Utrecht, Netherlands.
Lange, K., Townsend, C. R., Gabrielsson, R., Chanut, P., and Matthaei, C. D. (2014). Responses of stream fish populations to farming intensity and water abstraction in an agricultural catchment. Freshwater Biology 59, 286–299.
| Responses of stream fish populations to farming intensity and water abstraction in an agricultural catchment.Crossref | GoogleScholarGoogle Scholar |
Lozán, J. L. (1996). ‘Warnsignale aus Flüssen und Ästuaren: wissenschaftliche Fakten: mit 160 Abbildungen, 4 Tafeln und 60 Tabellen.’ (Parey: Berlin, Germany.)
McLean, D. L., and Puttee, A. T. (1944). The design, operation and maintenance of sewage lift stations. Sewage Works Journal 16, 789–799.
McNabb, C., Liston, C., and Borthwick, S. (2003). Passage of juvenile Chinook salmon and other fish species through Archimedes lifts and a Hidrostal pump at Red Bluff, California. Transactions of the American Fisheries Society 132, 326–334.
| Passage of juvenile Chinook salmon and other fish species through Archimedes lifts and a Hidrostal pump at Red Bluff, California.Crossref | GoogleScholarGoogle Scholar |
Mueller, M., Pander, J., and Geist, J. (2017). Evaluation of external fish injury caused by hydropower plants based on a novel field-based protocol. Fisheries Management and Ecology 24, 240–255.
| Evaluation of external fish injury caused by hydropower plants based on a novel field-based protocol.Crossref | GoogleScholarGoogle Scholar |
Nichtawitz, A., and Grafenberger, P. (2006). Fischschonende Turbinentechnik. DWA-Themen: Durchgängigkeit von Gewässern für die aquatische Fauna. In ‘Internationales DWA-Symposium zur Wasserwirtschaft’, 3–4 April 2006, Berlin, Germany. (Eds DWA-Fachausschuss WW-8.0.) pp. 107–115. (Deutsche Gesellschaft für Wasserwirtschaft, Abwasser und Abfall e.V.: Hennef, Germany.)
Pander, J., Mueller, M., Knott, J., and Geist, J. (2018). Catch-related fish injury and catch efficiency of stow-net-based fish recovery installations for fish-monitoring at hydropower plants. Fisheries Management and Ecology 25, 31–43.
| Catch-related fish injury and catch efficiency of stow-net-based fish recovery installations for fish-monitoring at hydropower plants.Crossref | GoogleScholarGoogle Scholar |
Schneider, J., Hübner, D., and Korte, E. (2012). Funktionskontrolle der Fischaufstiegs- und Fischabstiegshilfen sowie Erfassung der Mortalität bei Turbinendurchgang an der Wasserkraftanlage Kostheim am Main. Final report, Bürogemeinschaft für Fisch- & Gewässerökologische Studien, Frankfurt am Main, Germany.
Thompson, A. M., Glasgow, J., Buehrens, T., and Drucker, E. G. (2011). Mortality in juvenile salmonids passed through an agricultural Hidrostal pump. Fisheries Management and Ecology 18, 333–338.
| Mortality in juvenile salmonids passed through an agricultural Hidrostal pump.Crossref | GoogleScholarGoogle Scholar |
Trumbo, B. A., Ahmann, M. L., Renholds, J. F., Brown, R. S., Colotelo, A. H., and Deng, Z. D. (2014). Improving hydro turbine pressures to enhance salmon passage survival and recovery. Reviews in Fish Biology and Fisheries 24, 955–965.
| Improving hydro turbine pressures to enhance salmon passage survival and recovery.Crossref | GoogleScholarGoogle Scholar |
Vernerey, F. J., and Barthelat, F. (2010). On the mechanics of fishscale structures. International Journal of Solids and Structures 47, 2268–2275.
| On the mechanics of fishscale structures.Crossref | GoogleScholarGoogle Scholar |
Vis, H., de Bruijn, Q. A. A., and Kemper, J. H. (2013). Study of fish survivability at the Ennemaborgh pumping Station on 23 October 2012. Report VA2012_15, Hunze & Aa’s Water Authority, Veendam, Netherlands.
Vriese, F. T. (2009). Research into the fish-friendly axial pump. Report VA2009_19, Fishflow Innovations, Medemblik, Netherlands.
Westheide, W., and Rieger, G. (Eds) (2010). ‘Spezielle Zoologie, Teil 2: Wirbel- oder Schädeltiere’, 2nd edn. (Spektrum Akademischer Verlag: Heidelberg, Germany.)
Willner, S. N., Levermann, A., Zhao, F., and Frieler, K. (2018). Adaptation required to preserve future high-end river flood risk at present levels. Science Advances 4, eaao1914.
| Adaptation required to preserve future high-end river flood risk at present levels.Crossref | GoogleScholarGoogle Scholar |