Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

An angled rack with a bypass and a nature-like fishway pass Atlantic salmon smolts downstream at a hydropower dam

D. Nyqvist A , J. Elghagen A B , M. Heiss C and O. Calles A D
+ Author Affiliations
- Author Affiliations

A River Ecology and Management (RivEM), Department of Environmental and Life Sciences, Karlstad University, SE-651 88 Karlstad, Sweden.

B Elghagen Fiskevård, Långgatan 10, SE-265 31 Åstorp, Sweden.

C BNGF GmbH – Büro für Naturschutz-, Gewässer- und Fischereifragen, D-82396 Pähl, Germany.

D Corresponding author. Email: olle.calles@kau.se

Marine and Freshwater Research 69(12) 1894-1904 https://doi.org/10.1071/MF18065
Submitted: 28 February 2018  Accepted: 21 June 2018   Published: 27 September 2018

Journal Compilation © CSIRO 2018 Open Access CC BY-NC-ND

Abstract

Hydropower dams disrupt longitudinal connectivity and cause fragmentation of river systems, which has led to declines in migratory fish species. Atlantic salmon smolts rely on intact longitudinal connectivity to move downstream from rearing habitats in freshwater to feeding grounds at sea. Smolts often suffer increased mortality and delays when they encounter hydropower plants during their downstream migration. Currently, there are few examples of downstream passage solutions that allow safe and timely passage. We assessed the performance of two passage solutions at a hydropower dam, namely, an angled 15-mm rack with a bypass and a large nature-like fishway. The performance of these new fish passage solutions was evaluated by tracking radio-tagged Atlantic salmon smolts as they encountered the facilities. The radio-tagged smolts passed the dam 9.5 h after release (median) and exhibited a dam-passage efficiency of 84%, with passage rates increasing with body length. Fish passage occurred through both the rack bypass and the nature-like fishway. The passage efficiencies were 70–95% for the rack bypass and 47% for the nature-like fisway. The new fish passage facilities resulted in improved passage conditions at the site, confirming that angled racks with bypasses as best-practise solutions for downstream passage, but also that large nature-like fishways may act as downstream passage routes for salmon.

Additional keywords: downstream passage, fish passage solution, migration, passage efficiency.


References

Allison, P. D. (2010). ‘Survival Analysis using SAS: a Practical Guide.’ (SAS Institute: Cary, NC, USA.)

Bunt, C., Castro‐Santos, T., and Haro, A. (2012). Performance of fish passage structures at upstream barriers to migration. River Research and Applications 28, 457–478.
Performance of fish passage structures at upstream barriers to migration.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2003). ‘Model Selection and Multimodel Inference: a Practical Information–Theoretic Approach.’ (Springer Science & Business Media: New York, NY, USA.)

Calles, O., and Greenberg, L. (2009). Connectivity is a two-way street: the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25, 1268–1286.
Connectivity is a two-way street: the need for a holistic approach to fish passage problems in regulated rivers.Crossref | GoogleScholarGoogle Scholar |

Calles, O., Olsson, I. C., Comoglio, C., Kemp, P. S., Blunden, L., Schmitz, M., and Greenberg, L. A. (2010). Size-dependent mortality of migratorymigratory silver eels at a hydropower plant, and implications for escapement to the sea. Freshwater Biology 55, 2167–2180.
Size-dependent mortality of migratorymigratory silver eels at a hydropower plant, and implications for escapement to the sea.Crossref | GoogleScholarGoogle Scholar |

Calles, O., Karlsson, S., Hebrand, M., and Comoglio, C. (2012). Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant. Ecological Engineering 48, 30–37.
Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant.Crossref | GoogleScholarGoogle Scholar |

Calles, O., E. Degerman, H. Wickström, J. Christiansson, S. Gustafsson, and I. Näslund. (2013a). Anordningar för upp-och nedströmspassage av fisk vid vattenanläggningar. Underlag till vägledning om lämpliga försiktighetsmått och bästa möjliga teknik för vattenkraft. Havs-och vattenmyndighetens rapport 14:114, Havs- och vattenmyndigheten (HaV): Göteborg, Sweden. [In Swedish with an English summary].

Calles, O., Karlsson, S., Vezza, P., Comoglio, C., and Tielman, J. (2013b). Success of a low‐sloping rack for improving downstream passage of silver eels at a hydroelectric plant. Freshwater Biology 58, 2168–2179.
Success of a low‐sloping rack for improving downstream passage of silver eels at a hydroelectric plant.Crossref | GoogleScholarGoogle Scholar |

Calles, O., Rivinoja, P., and Greenberg, L. (2013c). A historical perspective on downstream passage at hydroelectric plants in Swedish rivers. In ‘Ecohydraulics: an Integrated Approach’. (Eds I. Maddock, A. Harby, P. Kemp, and P. Wood.) pp. 309–322. (Wiley: Chichester, UK.)

Castro-Santos, T. (2012). Adaptive fishway design: a framework and rationale for effective evaluations. In ‘Monitoring, Funktionskontrollen und Qualitätssicherung an Fischaufstiegsanlagen’. pp. 76–90. (Bundesanstalt für Gewässerkunde: Koblenz, Germany) Available at https://henry.baw.de/handle/20.500.11970/102404 [Verified 17 August 2018].

Castro-Santos, T., and Haro, A. (2003). Quantifying migratory delay: a new application of survival analysis methods. Canadian Journal of Fisheries and Aquatic Sciences 60, 986–996.
Quantifying migratory delay: a new application of survival analysis methods.Crossref | GoogleScholarGoogle Scholar |

Castro-Santos, T., and Perry, R. (2012). Time-to-event analysis as a framework for quantifying fish passage performance. In ‘Telemetry Techniques: a User Guide for Fisheries Research’. (Eds N. S. Adams, J. W. Beeman, and J. H. Eiler.) pp. 427–452. (America Fisheries Society: Bethesda, MD, USA.)

Colotelo, A. H., Jones, B. W., Harnish, R. A., McMichael, G. A., Ham, K. D., Deng, Z. D., Squeochs, G. M., Brown, R. S., Weiland, M. A., Ploskey, G. R., Li, X., and Fu, T. (2012). Steelhead kelt passage distributions and Federal Columbia River Power System survival for fish tagged above and at Lower Granite Dam draft final report. Batelle, Pacific Northwest Division, Richland, WA, USA.

Coutant, C. C., and Whitney, R. R. (2000). Fish behavior in relation to passage through hydropower turbines: a review. Transactions of the American Fisheries Society 129, 351–380.
Fish behavior in relation to passage through hydropower turbines: a review.Crossref | GoogleScholarGoogle Scholar |

Dingle, H. (2006). Animal migration: is there a common migratory syndrome? Journal of Ornithology 147, 212–220.
Animal migration: is there a common migratory syndrome?Crossref | GoogleScholarGoogle Scholar |

DWA (2005). ‘Fish Protection Technologies and Downstream Fishways. Dimensioning, Design, Effectiveness Inspection.’ (German Association for Water, Wastewater and Waste (DWA): Hennef, Germany).

Ebel, G. (2013). ‘Fischschutz und Fischabstieg an Wasserkraftanlagen. Handbuch Rechen-und Bypasssysteme. Ingenieurbiologische Grundlagen, Modellierung und Prognose, Bemessung und Gestaltung.’ (Büro für Gewässerökologie und Fischereibiologie: Halle (Saale), Germany.)

EPRI (2001). Evaluation of angled bar racks and louvers for guiding fish at water intakes (1005193). EPRI, Palo Alto, CA, USA, and Dominion Millstone Laboratories: Waterford, CT, USA.

Ferguson, J. W. (2005). The behavior and ecology of downstream migrating Atlantic salmon (Salmo salar. L.) and brown trout (Salmo trutta L.) in regulated rivers in northern Sweden. Report 44, Vattenbruksinstitutionen, Umeå, Sweden.

Ferguson, J. W., Absolon, R. F., Carlson, T. J., and Sandford, B. P. (2006). Evidence of delayed mortality on juvenile Pacific salmon passing through turbines at Columbia River dams. Transactions of the American Fisheries Society 135, 139–150.
Evidence of delayed mortality on juvenile Pacific salmon passing through turbines at Columbia River dams.Crossref | GoogleScholarGoogle Scholar |

Fox, J. (2002). Cox proportional-hazards regression for survival data. In ‘An R and S-PLUS Companion to Applied Regression’. pp. 1–18. (Sage: London, UK.)

Gosset, C., Travade, F., Durif, C., Rives, J., and Elie, P. (2005). Tests of two types of bypass for downstream migration of eels at a small hydroelectric power plant. River Research and Applications 21, 1095–1105.
Tests of two types of bypass for downstream migration of eels at a small hydroelectric power plant.Crossref | GoogleScholarGoogle Scholar |

Harza Engineering Company and RMC Environmental Services Inc (1992). Response of Atlantic salmon smolts to louvers in the Holyoke Canal, Spring 1992. New England Power Company.

Harza Engineering Company and RMC Environmental Services Inc (1993). Response of juvenile clupeids to louvers in the Holyoke Canal, Fall 1992. New England Power Company.

Havn, T. B., Økland, F., Teichert, M. A., Heermann, L., Borcherding, J., Sæther, S. A., Tambets, M., Diserud, O. H., and Thorstad, E. B. (2017). Movements of dead fish in rivers. Animal Biotelemetry 5, 7.
Movements of dead fish in rivers.Crossref | GoogleScholarGoogle Scholar |

Havn, T. B., Thorstad, E. B., Teichert, M. A. K., Sther, S. A., Heermann, L., Hedger, R. D., Tambets, M., Diserud, O. H., Borcherding, J., and Okland, F. (2018). Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine. Hydrobiologia 805, 273–290.
Hydropower-related mortality and behaviour of Atlantic salmon smolts in the River Sieg, a German tributary to the Rhine.Crossref | GoogleScholarGoogle Scholar |

Hebrand, M. (2012). Falkenbergs kommun. Hertings kraftverk, Ätran. Återställning av vandringsväg för fisk. Teknisk beskrivning. Rivning och nybyggnad av damm, återställning av åfåra, kontrollstationer samt fiskgaller. Fiskevårdsteknik AB, Lund, Sweden.

Heiß, M. (2015) Evaluation of innovative rehabilitation measures targeting downstream migrating Atlantic salmon smolt (Salmo salar) at a hydroelectric power plant in southern Sweden. M.Sc. Thesis, Ludwig-Maximilians-Universität, München, Germany.

Hesthagen, T., and Garnås, E. (1986). Migration of Atlantic salmon smolts in River Orkla of central Norway in relation to management of a hydroelectric station. North American Journal of Fisheries Management 6, 376–382.
Migration of Atlantic salmon smolts in River Orkla of central Norway in relation to management of a hydroelectric station.Crossref | GoogleScholarGoogle Scholar |

Hosmer, D. W., Lemeshow, S., and May, S. (2008). ‘Applied Survival Analysis: Regression Modeling of Time-to-Event Data’, 2nd edn. (Wiley: Hoboken, NJ, USA.)

Jepsen, N., Koed, A., Thorstad, E. B., and Baras, E. (2002). Surgical implantation of telemetry transmitters in fish: how much have we learned? Hydrobiologia 483, 239–248.
Surgical implantation of telemetry transmitters in fish: how much have we learned?Crossref | GoogleScholarGoogle Scholar |

Johnson, G. E., and Dauble, D. D. (2006). Surface flow outlets to protect juvenile salmonids passing through hydropower dams. Reviews in Fisheries Science 14, 213–244.
Surface flow outlets to protect juvenile salmonids passing through hydropower dams.Crossref | GoogleScholarGoogle Scholar |

Jonsson, B., and Jonsson, N. (2011). ‘Ecology of Atlantic Salmon and Brown Trout: Habitat as a Template for Life Histories.’ (Springer.)

Jonsson, B., Waples, R., and Friedland, K. (1999). Extinction considerations for diadromous fishes. ICES Journal of Marine Science: Journal du Conseil 56, 405–409.
Extinction considerations for diadromous fishes.Crossref | GoogleScholarGoogle Scholar |

Karchesky, C. M., Hanks, M. E., and McDonald, R. D. (2008). Annual report: T.W. Sullivan Powerhouse Evaluation of Bypass System Fish Guidance Efficiency (FGE). Normandeau Associates, Bedford, NH, USA.

Katopodis, C., and Williams, J. G. (2012). The development of fish passage research in a historical context. Ecological Engineering 48, 8–18.
The development of fish passage research in a historical context.Crossref | GoogleScholarGoogle Scholar |

Kemp, P. S., and Williams, J. G. (2008). Response of migrating Chinook salmon (Oncorhynchus tshawytscha) smolts to in‐stream structure associated with culverts. River Research and Applications 24, 571–579.
Response of migrating Chinook salmon (Oncorhynchus tshawytscha) smolts to in‐stream structure associated with culverts.Crossref | GoogleScholarGoogle Scholar |

Larsen, M. H., Johnsson, J. I., Näslund, J., Thomassen, S. T., and Aarestrup, K. (2016). Reduced rearing density increases postrelease migration success of Atlantic salmon (Salmo salar) smolts. Canadian Journal of Fisheries and Aquatic Sciences 73, 804–810.
Reduced rearing density increases postrelease migration success of Atlantic salmon (Salmo salar) smolts.Crossref | GoogleScholarGoogle Scholar |

Liedtke, T. L., and Rub, A. M. W. (2012). Techniques for telemetry transmitter attachment and evaluation of transmitter effects on fish performance. In ‘Telemetry Techniques: a User Guide for Fisheries Research’. (Eds N. S. Adams, J. W. Beeman, and J. H. Eiler.) pp. 48–87. (American Fisheries Society: Bethesda, MD, USA.)

Lucas, M. C., Baras, E., Thom, T. J., Duncan, A., and Slavík, O. (2001). ‘Migration of Freshwater Fishes.’ (Blackwell Science, Malden, MA, USA.)

Marmulla, G. (2001). ‘Dams, Fish and Fisheries: Opportunities, Challenges and Conflict Resolution.’ (Food & Agriculture Organisation: Rome, Italy.)

McCormick, S. D., Hansen, L. P., Quinn, T. P., and Saunders, R. L. (1998). Movement, migration, and smolting of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 55, 77–92.
Movement, migration, and smolting of Atlantic salmon (Salmo salar).Crossref | GoogleScholarGoogle Scholar |

McCormick, S. D., Cunjak, R. A., Dempson, B., O’Dea, M. F., and Carey, J. B. (1999). Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Canadian Journal of Fisheries and Aquatic Sciences 56, 1649–1667.
Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild.Crossref | GoogleScholarGoogle Scholar |

Montgomery, D. R. (2004). ‘King of Fish: the Thousand-year Run of Salmon.’ (Basic Books: Cambridge, MA, USA.)

Muir, W. D., Smith, S. G., Williams, J. G., and Sandford, B. P. (2001). Survival of juvenile salmonids passing through bypass systems, turbines, and spillways with and without flow deflectors at Snake River dams. North American Journal of Fisheries Management 21, 135–146.
Survival of juvenile salmonids passing through bypass systems, turbines, and spillways with and without flow deflectors at Snake River dams.Crossref | GoogleScholarGoogle Scholar |

Muir, W. D., Marsh, D. M., Sandford, B. P., Smith, S. G., and Williams, J. G. (2006). Post-hydropower system delayed mortality of transported Snake River stream-type Chinook salmon: unraveling the mystery. Transactions of the American Fisheries Society 135, 1523–1534.
Post-hydropower system delayed mortality of transported Snake River stream-type Chinook salmon: unraveling the mystery.Crossref | GoogleScholarGoogle Scholar |

Nettles, D., and Gloss, S. (1987). Migration of landlocked Atlantic salmon smolts and effectiveness of a fish bypass structure at a small-scale hydroelectric facility. North American Journal of Fisheries Management 7, 562–568.
Migration of landlocked Atlantic salmon smolts and effectiveness of a fish bypass structure at a small-scale hydroelectric facility.Crossref | GoogleScholarGoogle Scholar |

Nieminen, E., Hyytiäinen, K., and Lindroos, M. (2017). Economic and policy considerations regarding hydropower and migratory fish. Fish and Fisheries 18, 54–78.
Economic and policy considerations regarding hydropower and migratory fish.Crossref | GoogleScholarGoogle Scholar |

Noonan, M. J., Grant, J. W., and Jackson, C. D. (2012). A quantitative assessment of fish passage efficiency. Fish and Fisheries 13, 450–464.
A quantitative assessment of fish passage efficiency.Crossref | GoogleScholarGoogle Scholar |

Northcote, T. (1998). Migratory behaviour of fish and its significance to movement through riverine fish passage facilities. In ‘Migration and Fish Bypasses’. (Eds M. Jungwirth, S. Schmutz, and S. Weiss.) pp. 3–18. (Fishing News Books: Oxford, UK.)

Nyqvist, D., Nilsson, P. A., Alenäs, I., Elghagen, J., Hebrand, M., Karlsson, S., Kläppe, S., and Calles, O. (2017a). Upstream and downstream passage of migrating adult Atlantic salmon: remedial measures improve passage performance at a hydropower dam. Ecological Engineering 102, 331–343.
Upstream and downstream passage of migrating adult Atlantic salmon: remedial measures improve passage performance at a hydropower dam.Crossref | GoogleScholarGoogle Scholar |

Nyqvist, D., Greenberg, L. A., Goerig, E., Calles, O., Bergman, E., Ardren, W. R., and Castro‐Santos, T. (2017b). Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam. Ecology Freshwater Fish 26, 707–718.
Migratory delay leads to reduced passage success of Atlantic salmon smolts at a hydroelectric dam.Crossref | GoogleScholarGoogle Scholar |

Nyqvist, D., McCormick, S. D., Greenberg, L., Ardren, W. R., Bergman, E., Calles, O., and Castro-Santos, T. (2017c). Downstream migration and multiple dam passage by Atlantic salmon smolts. North American Journal of Fisheries Management 37, 816–828.
Downstream migration and multiple dam passage by Atlantic salmon smolts.Crossref | GoogleScholarGoogle Scholar |

Nyqvist, D., Bergman, E., Calles, O., and Greenberg, L. (2017d). Intake approach and dam passage by downstream‐migrating Atlantic salmon kelts. River Research and Applications 33, 697–706.
Intake approach and dam passage by downstream‐migrating Atlantic salmon kelts.Crossref | GoogleScholarGoogle Scholar |

Olofsson, H. (2013). ‘Recipientkontrollen i Ätran 2012.’ (Ätrans Vattenråd & ALcontrol AB: Linköping, Sweden.)

Peake, S., and McKinley, R. (1998). A re-evaluation of swimming performance in juvenile salmonids relative to downstream migration. Canadian Journal of Fisheries and Aquatic Sciences 55, 682–687.
A re-evaluation of swimming performance in juvenile salmonids relative to downstream migration.Crossref | GoogleScholarGoogle Scholar |

Richards, S. A. (2008). Dealing with overdispersed count data in applied ecology. Journal of Applied Ecology 45, 218–227.
Dealing with overdispersed count data in applied ecology.Crossref | GoogleScholarGoogle Scholar |

Roscoe, D. W., and Hinch, S. G. (2010). Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish and Fisheries 11, 12–33.
Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions.Crossref | GoogleScholarGoogle Scholar |

Schwinn, M., Baktoft, H., Aarestrup, K., and Koed, A. (2017). A comparison of the survival and migration of wild and F1-hatchery-reared brown trout (Salmo trutta) smolts traversing an artificial lake. Fisheries Research 196, 47–55.
A comparison of the survival and migration of wild and F1-hatchery-reared brown trout (Salmo trutta) smolts traversing an artificial lake.Crossref | GoogleScholarGoogle Scholar |

Scruton, D., McKinley, R., Kouwen, N., Eddy, W., and Booth, R. (2002). Use of telemetry and hydraulic modeling to evaluate and improve fish guidance efficiency at a louver and bypass system for downstream-migrating Atlantic salmon (Salmo salar) smolts and kelts. Hydrobiologia 483, 83–94.
Use of telemetry and hydraulic modeling to evaluate and improve fish guidance efficiency at a louver and bypass system for downstream-migrating Atlantic salmon (Salmo salar) smolts and kelts.Crossref | GoogleScholarGoogle Scholar |

Scruton, D., McKinley, R., Kouwen, N., Eddy, W., and Booth, R. (2003). Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts. River Research and Applications 19, 605–617.
Improvement and optimization of fish guidance efficiency (FGE) at a behavioural fish protection system for downstream migrating Atlantic salmon (Salmo salar) smolts.Crossref | GoogleScholarGoogle Scholar |

Scruton, D. A., Pennell, C. J., Robertson, M. J., Clarke, K. D., Eddy, W., and McKinley, R. S. (2004). Telemetry studies of the passage route and entrainment of downstream migrating wild Atlantic salmon (Salmo salar) smolts at two hydroelectric installations on the Exploits River, Newfoundland, Canada. In ‘Aquatic Telemetry: Advances and Applications’. (Eds M. T. Spedicato, G. Lembo, and G. Marmulla.) pp. 91–101. (FAO/COISPA: Rome, Italy.)

Scruton, D., Pennell, C., Bourgeois, C., Goosney, R., Porter, T., and Clarke, K. (2007). Assessment of a retrofitted downstream fish bypass system for wild Atlantic salmon (Salmo salar) smolts and kelts at a hydroelectric facility on the Exploits River, Newfoundland, Canada. Hydrobiologia 582, 155–169.
Assessment of a retrofitted downstream fish bypass system for wild Atlantic salmon (Salmo salar) smolts and kelts at a hydroelectric facility on the Exploits River, Newfoundland, Canada.Crossref | GoogleScholarGoogle Scholar |

Scruton, D., Pennell, C., Bourgeois, C., Goosney, R., King, L., Booth, R., Eddy, W., Porter, T., Ollerhead, L., and Clarke, K. (2008). Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada. Hydrobiologia 609, 225–239.
Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada.Crossref | GoogleScholarGoogle Scholar |

Serrano, I., Rivinoja, P., Karlsson, L., and Larsson, S. (2009). Riverine and early marine survival of stocked salmon smolts, Salmo salar L., descending the Testebo River, Sweden. Fisheries Management and Ecology 16, 386–394.
Riverine and early marine survival of stocked salmon smolts, Salmo salar L., descending the Testebo River, Sweden.Crossref | GoogleScholarGoogle Scholar |

Spicer, A. V., Moring, J. R., and Trial, J. G. (1995). Downstream migratory behavior of hatchery-reared, radio-tagged Atlantic salmon (Salmo salar) smolts in the Penobscot River, Maine, USA. Fisheries Research 23, 255–266.
Downstream migratory behavior of hatchery-reared, radio-tagged Atlantic salmon (Salmo salar) smolts in the Penobscot River, Maine, USA.Crossref | GoogleScholarGoogle Scholar |

Stira, R. J., and Robinson, D. A. (1997). Effectiveness of a louver bypass system for downstream passage of Atlantic salmon smolts and juvenile clupeids in the Holyoke Canal, Connecticut River, Holyoke, Massachusetts. In ‘EPRI Fish Passage Workshop’, 6–8 May 1997, Milwaukee, WI, USA. (Electric Power Research Institute: Palo Alto, CA, USA.)

Tanguy, J., Ombredane, D., Bagliniere, J., and Prunet, P. (1994). Aspects of parr-smolt transformation in anadromous and resident forms of brown trout (Salmo trutta) in comparison with Atlantic salmon (Salmo salar). Aquaculture 121, 51–63.
Aspects of parr-smolt transformation in anadromous and resident forms of brown trout (Salmo trutta) in comparison with Atlantic salmon (Salmo salar).Crossref | GoogleScholarGoogle Scholar |

Thorstad, E. B., Rikardsen, A. H., Alp, A., and Okland, F. (2013). The use of electronic tags in fish research: an overview of fish telemetry methods. Turkish Journal of Fisheries and Aquatic Sciences 13, 881–896.

Tomanova, S., Courret, D., and Alric, A. (2017). Protecting fish from entering turbines: the efficiency of a low-sloping rack for downstream migration of Atlantic salmon smolts. Houille Blanche 1, 11–13.
Protecting fish from entering turbines: the efficiency of a low-sloping rack for downstream migration of Atlantic salmon smolts.Crossref | GoogleScholarGoogle Scholar |

Whitney, R. R., and Council, N. P. P. (1997). ‘Downstream Passage for Salmon at Hydroelectric Projects in the Columbia River Basin: Development, Installation, and Evaluation.’ (Northwest Power Planning Council: Portland, OR, USA.)

Wickham, H. (2016). ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer: New York, NY, USA.)