Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Decade of change in Enhalus acoroides seagrass meadows in Guam, Mariana Islands

Carly K. LaRoche A , Benjamin R. Goldstein A , Jonathan D. Cybulski A D , Laurie J. Raymundo B , Lillian R. Aoki C and Kiho Kim A E
+ Author Affiliations
- Author Affiliations

A Department of Environmental Science, American University, Washington, DC 20016, USA.

B University of Guam, UOG Station, Mangilao, GU 96923, USA.

C Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA.

D Present address: The Swire Institute of Marine Science, The University of Hong Kong, Cape d’Aguilar Road, Shek O, Hong Kong SAR, PR China.

E Corresponding author. Email: kiho@american.edu

Marine and Freshwater Research 70(2) 246-254 https://doi.org/10.1071/MF18062
Submitted: 16 February 2018  Accepted: 10 July 2018   Published: 4 October 2018

Abstract

Seagrasses provide important ecosystem services, including carbon sequestration. However, there are significant gaps in our estimates of seagrass coverage, particularly in the western tropical Pacific. In the present study we assessed the status and extent of seagrass meadows, dominated by Enhalus acoroides, around Guam, the largest and most populated island in the Marianas. The combined above- and belowground biomass of E. acoroides (~2300 g dry weight m–2) is the highest reported for this species and among the highest for all seagrass species. Elemental analysis of C, N and P revealed variations across site and plant part (i.e. above- v. belowground); N : P ratios suggested N limitation. Between 2004 and 2015, seagrass meadows in Guam decreased in total size by 22%, although it is unclear whether this change was part of a long-term trend and whether it was caused by natural or human factors. The high standing stock of E. acoroides suggests that further examination of this species and this region will be needed to better estimate global seagrass carbon stocks.


References

Agawin, N. S. R., Duarte, C. M., and Fortes, M. D. (1996). Nutrient limitation of Philippines seagrasses (Cape Boliano, NW Philippines): in situ experimental evidence. Marine Ecology Progress Series 138, 233–243.
Nutrient limitation of Philippines seagrasses (Cape Boliano, NW Philippines): in situ experimental evidence.Crossref | GoogleScholarGoogle Scholar |

Alongi, D. M., Murdiyarso, D., Fourqurean, J. W., Kauffman, J. B., Hutahaean, A., Crooks, S., Lovelock, C. E., Howard, J., Herr, D., Fortes, M., Pidgeon, E., and Wagey, T. (2016). Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon. Wetlands Ecology and Management 24, 3–13.
Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon.Crossref | GoogleScholarGoogle Scholar |

Atkinson, M. J., and Smith, S. V. (1983). C-N-P ratios of benthic marine plants. Limnology and Oceanography 28, 568–574.
C-N-P ratios of benthic marine plants.Crossref | GoogleScholarGoogle Scholar |

Birch, W. R. (1975). Some chemical and calorific properties of tropical marine angiosperms compared with those of other plants. Journal of Applied Ecology 12, 201–212.
Some chemical and calorific properties of tropical marine angiosperms compared with those of other plants.Crossref | GoogleScholarGoogle Scholar |

Bridges, K. W., and McMillan, C. (1986). The distribution of seagrasses of Yap, Micronesia, with relation to low tide conditions. Aquatic Botany 24, 403–407.
The distribution of seagrasses of Yap, Micronesia, with relation to low tide conditions.Crossref | GoogleScholarGoogle Scholar |

Burdick, D. (2005) Guam coastal atlas. University of Guam Marine Laboratory, Technical Report 114, Mangilao. Available at www.guammarinelab.org/coastal.atlas [Verified 08 Aug 2018].

Burkholder, J. M., Tomasko, D. A., and Touchette, B. W. (2007). Seagrasses and eutrophication. Journal of Experimental Marine Biology and Ecology 350, 46–72.
Seagrasses and eutrophication.Crossref | GoogleScholarGoogle Scholar |

Cebrián, J., and Duarte, C. M. (1998). Patterns in leaf herbivory on seagrasses. Aquatic Botany 60, 67–82.
Patterns in leaf herbivory on seagrasses.Crossref | GoogleScholarGoogle Scholar |

Cullen-Unsworth, L., and Unsworth, R. (2013). Seagrass meadows, ecosystem services, and sustainability. Environment 55, 14–27.
Seagrass meadows, ecosystem services, and sustainability.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M. (1990). Seagrass nutrient content. Marine Ecology Progress Series 67, 201–207.
Seagrass nutrient content.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M. (1992). Nutrient concentration of aquatic plants – patterns across species. Limnology and Oceanography 37, 882–889.
Nutrient concentration of aquatic plants – patterns across species.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M., and Chiscano, C. L. (1999). Seagrass biomass and production: a reassessment. Aquatic Botany 65, 159–174.
Seagrass biomass and production: a reassessment.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M., Uri, J. S., Agawin, N. S. R., Fortes, M. D., Vermaat, J. E., and Marba, N. (1997). Flowering frequency of Philippine seagrasses. Botanica Marina 40, 497–500.

Duarte, C. M., Merino, M., Agawin, N. S. R., Uri, J., Fortes, M. D., Gallegos, M. E., Marba, N., and Hemminga, M. A. (1998). Root production and belowground seagrass biomass. Marine Ecology Progress Series 171, 97–108.
Root production and belowground seagrass biomass.Crossref | GoogleScholarGoogle Scholar |

Duarte, C. M., Kennedy, H., Marba, N., and Hendriks, I. (2013). Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies. Ocean and Coastal Management 83, 32–38.
Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies.Crossref | GoogleScholarGoogle Scholar |

Erftemeijer, P. L. A. (1994). Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in South Sulawesi, Indonesia. Bulletin of Marine Science 54, 403–419.

Erftemeijer, P. L. A., and Herman, P. M. J. (1994). Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia. Oecologia 99, 45–59.
Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Estacion, J. S., and Fortes, M. D. (1988). Growth rates and primary production of Enhalus acoroides (L.f.) Royle from Lag-It, North Bais Bay, the Philippines. Aquatic Botany 29, 347–356.
Growth rates and primary production of Enhalus acoroides (L.f.) Royle from Lag-It, North Bais Bay, the Philippines.Crossref | GoogleScholarGoogle Scholar |

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marba, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., and Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5, 505–509.
Seagrass ecosystems as a globally significant carbon stock.Crossref | GoogleScholarGoogle Scholar |

Gullström, M., Lunden, B., Bodin, M., Kangwe, J., Ohman, M. C., Mtolera, M. S. P., and Bjork, M. (2006). Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing. Estuarine, Coastal and Shelf Science 67, 399–408.
Assessment of changes in the seagrass-dominated submerged vegetation of tropical Chwaka Bay (Zanzibar) using satellite remote sensing.Crossref | GoogleScholarGoogle Scholar |

Holmer, M., and Olsen, A. B. (2002). Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Marine Ecology Progress Series 230, 87–101.
Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest.Crossref | GoogleScholarGoogle Scholar |

Hossain, M. S., Bujang, J. S., Zakaria, M. H., and Hashim, M. (2015). The application of remote sensing to seagrass ecosystems: an overview and future research prospects. International Journal of Remote Sensing 36, 61–114.
The application of remote sensing to seagrass ecosystems: an overview and future research prospects.Crossref | GoogleScholarGoogle Scholar |

Houk, P., and van Woesik, R. (2008). Dynamics of shallow-water assemblages in the Saipan Lagoon. Marine Ecology Progress Series 356, 39–50.
Dynamics of shallow-water assemblages in the Saipan Lagoon.Crossref | GoogleScholarGoogle Scholar |

Howard, J. L., Creed, J. C., Aguiar, M. V. P., and Fourqurean, J. W. (2018). CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass ‘Blue Carbon’ storage. Limnology and Oceanography 63, 160–172.
CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass ‘Blue Carbon’ storage.Crossref | GoogleScholarGoogle Scholar |

Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marba, N., and Middelburg, J. J. (2010). Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochemical Cycles 24, GB4026.
Seagrass sediments as a global carbon sink: isotopic constraints.Crossref | GoogleScholarGoogle Scholar |

Kock, R. L., and Tsuda, R. T. (1978). Seagrass assemblages of Yap, Micronesia. Aquatic Botany 5, 245–249.
Seagrass assemblages of Yap, Micronesia.Crossref | GoogleScholarGoogle Scholar |

Lacap, C. D. A., Vermaat, J. E., Rollón, R. N., and Nacorda, H. M. (2002). Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii. Marine Ecology Progress Series 235, 75–80.
Propagule dispersal of the SE Asian seagrasses Enhalus acoroides and Thalassia hemprichii.Crossref | GoogleScholarGoogle Scholar |

Lapointe, B. E., Tomasko, D. A., and Matzie, W. R. (1994). Eutrophication and trophic state classification of seagrass communities in the Florida Keys. Bulletin of Marine Science 54, 696–717.

Lavery, P. S., Mateo, M. A., Serrano, O., and Rozaimi, M. (2013). Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8, e73748.
Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service.Crossref | GoogleScholarGoogle Scholar |

Lobban, C. S., and Tsuda, R. T. (2003). Revised checklist of benthic marine macroalgae and seagrasses of Guam and Micronesia. Micronesica 35, 54–99.

Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9, 552–560.
A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2.Crossref | GoogleScholarGoogle Scholar |

Misbari, S., and Hashim, M. (2016). Change detection of submerged seagrass biomass in shallow coastal water. Remote Sensing 8, 200.
Change detection of submerged seagrass biomass in shallow coastal water.Crossref | GoogleScholarGoogle Scholar |

Mumby, P. J., Green, E. P., Edwards, A. J., and Clark, C. D. (1997). Measurement of seagrass standing crop using satellite and digital airborne remote sensing. Marine Ecology Progress Series 159, 51–60.
Measurement of seagrass standing crop using satellite and digital airborne remote sensing.Crossref | GoogleScholarGoogle Scholar |

Nakajima, Y., Matsuki, Y., Lian, C. L., Fortes, M. D., Uy, W. H., Campos, W. L., Nakaoka, M., and Nadaoka, K. (2014). The Kuroshio Current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides. Molecular Ecology 23, 6029–6044.
The Kuroshio Current influences genetic diversity and population genetic structure of a tropical seagrass, Enhalus acoroides.Crossref | GoogleScholarGoogle Scholar |

Nakamura, Y., and Sano, M. (2004). Comparison between community structures of fishes in Enhalus acoroides- and Thalassia hemprichii-dominated seagrass beds on fringing coral reefs in the Ryukyu Islands, Japan. Ichthyological Research 51, 38–45.
Comparison between community structures of fishes in Enhalus acoroides- and Thalassia hemprichii-dominated seagrass beds on fringing coral reefs in the Ryukyu Islands, Japan.Crossref | GoogleScholarGoogle Scholar |

Nakaoka, M., and Supanwanid, C. (2000). Quantitative estimation of the distribution and biomass of seagrasses at Haad Chao Mai National Park, Trang province, Thailand. Kasetsart University Fisheries Research Bulletin 22, 10–22.

Nienhuis, P. H., Coosen, J., and Kiswara, W. (1989). Community structure and biomass distribution of seagrasses and macrofauna in the Flores Sea, Indonesia. Netherlands Journal of Sea Research 23, 197–214.
Community structure and biomass distribution of seagrasses and macrofauna in the Flores Sea, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Nordlund, L. M., Koch, E. W., Barbier, E. B., and Creed, J. C. (2016). Seagrass ecosystem services and their variability across genera and geographical regions. PLoS One 11, e0163091.
Seagrass ecosystem services and their variability across genera and geographical regions.Crossref | GoogleScholarGoogle Scholar |

Ogden, J. C. (1992). The impact of Hurricane Andrew on the ecosystems of south Florida. Conservation Biology 6, 488–490.
The impact of Hurricane Andrew on the ecosystems of south Florida.Crossref | GoogleScholarGoogle Scholar |

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L. (2006). A global crisis for seagrass ecosystems. Bioscience 56, 987–996.
A global crisis for seagrass ecosystems.Crossref | GoogleScholarGoogle Scholar |

Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marba, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., and Baldera, A. (2012). Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7, e43542.
Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Pinkerton, K., Baker, D. M., Cuddy, M. R., Raymundo, L. J., Meyer, K. A., and Kim, K. (2015). Nitrogen dynamics on Guam as revealed by the seagrass Enhalus acoroides. Marine Ecology Progress Series 528, 117–126.
Nitrogen dynamics on Guam as revealed by the seagrass Enhalus acoroides.Crossref | GoogleScholarGoogle Scholar |

Poovachiranon, S., and Chansang, H. (1994). Community structure and biomass of seagrass beds in the Andaman Sea. I. Mangrove-associated seagrass beds. Research Bulletin – Phuket Marine Biological Center 59, 53–64.

Rasheed, M. A., and Unsworth, R. K. F. (2011). Long-term climate-associated dynamics of a tropical seagrass meadow: implications for the future. Marine Ecology Progress Series 422, 93–103.
Long-term climate-associated dynamics of a tropical seagrass meadow: implications for the future.Crossref | GoogleScholarGoogle Scholar |

Rasheed, M. A., Dew, K. R., McKenzie, L. J., Coles, R. G., Kerville, S. P., and Campbell, S. J. (2008). Productivity, carbon assimilation and intra-annual change in tropical reef platform seagrass communities of the Torres Strait, north-eastern Australia. Continental Shelf Research 28, 2292–2303.
Productivity, carbon assimilation and intra-annual change in tropical reef platform seagrass communities of the Torres Strait, north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Roelfsema, C., Kovacs, E. M., Saunders, M. I., Phinn, S., Lyons, M., and Maxwell, P. (2013). Challenges of remote sensing for quantifying changes in large complex seagrass environments. Estuarine, Coastal and Shelf Science 133, 161–171.
Challenges of remote sensing for quantifying changes in large complex seagrass environments.Crossref | GoogleScholarGoogle Scholar |

Rollón, R. N., van Steveninck, E. D. D., van Vierssen, W., and Fortes, M. D. (1998). Contrasting recolonization strategies in multi-species seagrass meadows. Marine Pollution Bulletin 37, 450–459.

Rollón, R. N., van Steveninck, E. D. D., and van Vierssen, W. (2003). Spatio-temporal variation in sexual reproduction of the tropical seagrass Enhalus acoroides (L.f.) Royle in Cape Bolinao, NW Philippines. Aquatic Botany 76, 339–354.
Spatio-temporal variation in sexual reproduction of the tropical seagrass Enhalus acoroides (L.f.) Royle in Cape Bolinao, NW Philippines.Crossref | GoogleScholarGoogle Scholar |

Supriadi, S., Kaswadji, R. F., Bengen, D. G., and Hutomo, M. (2014). Carbon stock of seagrass community in Barranglompo Island, Makassar. Ilmu Kelautan 19, 1–10.
Carbon stock of seagrass community in Barranglompo Island, Makassar.Crossref | GoogleScholarGoogle Scholar |

Terrados, J., Duarte, C. M., Fortes, M. D., Borum, J., Agawin, N. S. R., Bach, S., Thampanya, U., Kamp-Nielsen, L., Kenworthy, W. J., Geertz-Hansen, O., and Vermaat, J. (1998). Changes in community structure and biomass of seagrass communities along gradients of siltation in SE Asia. Estuarine, Coastal and Shelf Science 46, 757–768.
Changes in community structure and biomass of seagrass communities along gradients of siltation in SE Asia.Crossref | GoogleScholarGoogle Scholar |

Terrados, J., Agawin, N. S. R., Duarte, C. M., Fortes, M. D., Kamp-Nielsen, L., and Burum, J. (1999a). Nutrient limitation of the tropical seagrass Enhalus acoroides (L.) Royle in Cape Bolinao, NW Philippines. Aquatic Botany 65, 123–139.
Nutrient limitation of the tropical seagrass Enhalus acoroides (L.) Royle in Cape Bolinao, NW Philippines.Crossref | GoogleScholarGoogle Scholar |

Terrados, J., Borum, J., Duarte, C. M., Fortes, M. D., Kamp-Nielsen, L., Agawin, N. S. R., and Kenworthy, W. J. (1999b). Nutrient and mass allocation of South-east Asian seagrasses. Aquatic Botany 63, 203–217.
Nutrient and mass allocation of South-east Asian seagrasses.Crossref | GoogleScholarGoogle Scholar |

Tsuda, R. T., and Kamura, S. (1990). Comparative review on the floristics, phytogeography, seasonal aspects and assemblage patterns of the seagrass flora in Micronesia and the Ryukyu Islands. Galaxea 9, 77–93.

Tsuda, R. T., Fosberg, F. R., and Sachet, M. H. (1977). Distribution of seagrasses in Micronesia. Micronesica 13, 191–198.

Udy, J. W., Dennison, W. C., Long, W. J. L., and McKenzie, L. J. (1999). Responses of seagrass to nutrients in the Great Barrier Reef, Australia. Marine Ecology Progress Series 185, 257–271.
Responses of seagrass to nutrients in the Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Unsworth, R. K. F., Taylor, J. D., Powell, A., Bell, J. J., and Smith, D. J. (2007). The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific. Estuarine, Coastal and Shelf Science 74, 53–62.
The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific.Crossref | GoogleScholarGoogle Scholar |

Unsworth, R. K. F., Rasheed, M. A., Chartrand, K. M., and Roelofs, A. J. (2012). Solar radiation and tidal exposure as environmental drivers of Enhalus acoroides dominated seagrass meadows. PLoS One 7, e34133.
Solar radiation and tidal exposure as environmental drivers of Enhalus acoroides dominated seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

van Katwijk, M. M., van der Welle, M. E. W., Lucassen, E. C. H. E. T., Vonk, J. A., Christianen, M. J. A., Kiswara, W., al Hakim, I. I., Arifin, A., Bouma, T. J., Roelofs, J. G. M., and Lamers, L. P. M. (2011). Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia. Marine Pollution Bulletin 62, 1512–1520.
Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia.Crossref | GoogleScholarGoogle Scholar |

Verheij, E., and Erftemeijer, P. L. A. (1993). Distribution of seagrasses and associated macroalgae in south Sulawesi, Indonesia. Blumea 38, 45–64.

Vermaat, J. E., Agawin, N. S. R., Duarte, C. M., Fortes, M. D., Marba, N., and Uri, J. S. (1995). Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed. Marine Ecology Progress Series 124, 215–225.
Meadow maintenance, growth and productivity of a mixed Philippine seagrass bed.Crossref | GoogleScholarGoogle Scholar |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Wirachwong, P., and Holmer, M. (2010). Nutrient dynamics in 3 morphological different tropical seagrasses and their sediments. Aquatic Botany 93, 170–178.
Nutrient dynamics in 3 morphological different tropical seagrasses and their sediments.Crossref | GoogleScholarGoogle Scholar |

Yamamuro, M., Umezawa, Y., and Koike, I. (2004). Internal variations in nutrient concentrations and the C and N stable isotope ratios in leaves of the seagrass Enhalus acoroides. Aquatic Botany 79, 95–102.
Internal variations in nutrient concentrations and the C and N stable isotope ratios in leaves of the seagrass Enhalus acoroides.Crossref | GoogleScholarGoogle Scholar |

Yang, D. T., and Yang, C. Y. (2009). Detection of seagrass distribution changes from 1991 to 2006 in Xincun Bay, Hainan, with satellite remote sensing. Sensors 9, 830–844.
Detection of seagrass distribution changes from 1991 to 2006 in Xincun Bay, Hainan, with satellite remote sensing.Crossref | GoogleScholarGoogle Scholar |