Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Ephemeral parasitism on blooming diatoms in a temperate estuary

Valeria A. Guinder A E , M. Cecilia Carcedo A , Natalia Buzzi A B , Juan Carlos Molinero C , Celeste López Abbate A , Fernández Severini Melisa A , Biancalana Florencia A and Stefanie Kühn D
+ Author Affiliations
- Author Affiliations

A Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga kilómetro 7,5, 8000 Bahía Blanca, Argentina.

B Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca, Argentina.

C GEOMAR Helmholtz Centre for Ocean Research Kiel, Marine Ecology/Food Webs, Duesternbrooker Weg 20, D-24105 Kiel, Germany.

D Am Holunder 8, D-27619 Schiffdorf, Germany.

E Corresponding author. Email: vguinder@criba.edu.ar

Marine and Freshwater Research 69(1) 128-133 https://doi.org/10.1071/MF17062
Submitted: 2 March 2017  Accepted: 25 July 2017   Published: 12 September 2017

Abstract

Parasites of phytoplankton influence phytoplankton bloom dynamics and may severely affect the type of food available for higher trophic levels. The incidence of parasitic infections generally is expected to increase across ecosystems worldwide under the scenario of global change. Herein we report on a massive parasite infection on two dominant diatoms of the austral winter bloom, namely Thalassiosira pacifica and Chaetoceros diadema, recorded during an extreme precipitation period in the Bahía Blanca Estuary, Argentina. The parasite infection was concomitant with a marked drop in water salinity and affected more than 40% of host cells. Although the parasite on C. diadema was not identified, the parasite on T. pacifica was most likely Pirsonia sp., a nanoflagellate with high host specificity. After the intense rainy period and the parasitic infection, the phytoplankton biomass dropped (by more than 80%) and the community structure shifted to one with smaller species (i.e. Thalassiosira curviseriata, T. hibernalis and T. minima). We discuss the implications that these modifications may have on the food web dynamics and the potential relationship between precipitation-driven modifications in water properties and the emergence of parasitism in coastal eutrophic environments.

Additional keywords: parasitic protists, phytoplankton bloom, precipitation, species turnover.


References

Alves-de-Souza, C., Varela, D., Iriarte, J. L., González, H. E., and Guillou, L. (2012). Infection dynamics of Amoebophryidae parasitoids on harmful dinoflagellates in a southern Chilean fjord dominated by diatoms. Aquatic Microbial Ecology 66, 183–197.
Infection dynamics of Amoebophryidae parasitoids on harmful dinoflagellates in a southern Chilean fjord dominated by diatoms.Crossref | GoogleScholarGoogle Scholar |

Balzano, S., Sarno, D., and Kooistra, W. H. (2011). Effects of salinity on the growth rate and morphology of ten Skeletonema strains. Journal of Plankton Research 33, 937–945.
Effects of salinity on the growth rate and morphology of ten Skeletonema strains.Crossref | GoogleScholarGoogle Scholar |

Berasategui, A. A., Hoffmeyer, M. S., Biancalana, F., Fernández Severini, M. D., and Menéndez, M. C. (2009). Temporal variation in abundance and fecundity of the invading copepod Eurytemora americana in Bahía Blanca Estuary during an unusual year. Estuarine, Coastal and Shelf Science 85, 82–88.
Temporal variation in abundance and fecundity of the invading copepod Eurytemora americana in Bahía Blanca Estuary during an unusual year.Crossref | GoogleScholarGoogle Scholar |

Brooks, D. R., and Hoberg, E. P. (2007). How will global climate change affect parasite–host assemblages? Trends in Parasitology 23, 571–574.
How will global climate change affect parasite–host assemblages?Crossref | GoogleScholarGoogle Scholar |

Burge, C. A., Eakin, C. M., Friedman, C. S., Froelich, B., Hershberger, P. K., Hofmann, E. E., Petes, L. E., Prager, K. C., Weil, E., Willis, B. L., Ford, S. E., and Harvell, C. D. (2014). Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science 6, 249–277.
Climate change influences on marine infectious diseases: implications for management and society.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6: User Manual/Tutorial.’ (PRIMER-E: Plymouth, UK.)

Clarke, K. R., and Warwick, R. M. (1994). Similarity-based testing for community pattern: the two-way layout with no replication. Marine Biology 118, 167–176.
Similarity-based testing for community pattern: the two-way layout with no replication.Crossref | GoogleScholarGoogle Scholar |

Dunne, J. A., Lafferty, K. D., Dobson, A. P., Hechinger, R. F., Kuris, A. M., Martinez, N. D., McLaughlin, J. P., Mouritsen, K. N., Poulin, R., Reise, K., and Stouffer, D. B. (2013). Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biology 11, e1001579.
Parasites affect food web structure primarily through increased diversity and complexity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGjsL%2FJ&md5=433eda08f0d2d3eec5453a5a66ec7991CAS |

Flöder, S., Jaschinski, S., Wells, G., and Burns, C. W. (2010). Dominance and compensatory growth in phytoplankton communities under salinity stress. Journal of Experimental Marine Biology and Ecology 395, 223–231.
Dominance and compensatory growth in phytoplankton communities under salinity stress.Crossref | GoogleScholarGoogle Scholar |

Frenken, T., Velthuis, M., De Senerpont Domis, L. N., Stephan, S., Aben, R., Kosten, S., Van Donk, E., and Van De Waal, D. B. (2016). Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Global Change Biology 22, 299–309.
Warming accelerates termination of a phytoplankton spring bloom by fungal parasites.Crossref | GoogleScholarGoogle Scholar |

Gsell, A. S., de Senerpont Domis, L. N., Verhoeven, K. J. F., van Donk, E., and Ibelings, B. W. (2013). Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. The ISME Journal 7, 2057–2059.
Chytrid epidemics may increase genetic diversity of a diatom spring-bloom.Crossref | GoogleScholarGoogle Scholar |

Guinder, V. A., Popovich, C. A., Molinero, J. C., and Perillo, G. M. E. (2010). Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina. Marine Biology 157, 2703–2716.
Long-term changes in phytoplankton phenology and community structure in the Bahía Blanca Estuary, Argentina.Crossref | GoogleScholarGoogle Scholar |

Guinder, V. A., Molinero, J. C., Popovich, C. A., Marcovecchio, J. E., and Sommer, U. (2012). Dominance of the planktonic diatom Thalassiosira minima in recent summers in the Bahía Blanca Estuary, Argentina. Journal of Plankton Research 34, 995–1000.
Dominance of the planktonic diatom Thalassiosira minima in recent summers in the Bahía Blanca Estuary, Argentina.Crossref | GoogleScholarGoogle Scholar |

Guinder, V. A., Molinero, J. C., López Abbate, M. C., Berasategui, A. A., Popovich, C. A., Spetter, C. V., Marcovecchio, J. E., and Freije, R. H. (2017). Phenological changes of blooming diatoms promoted by compound bottom-up and top-down controls. Estuaries and Coasts 40, 95–104.
Phenological changes of blooming diatoms promoted by compound bottom-up and top-down controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXkslY%3D&md5=819517c94d5510939e4777d7e680c016CAS |

Hanic, L. A., Sekimoto, S., and Bates, S. S. (2009). Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island, Canada. Botany 87, 1096–1105.
Oomycete and chytrid infections of the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae) from Prince Edward Island, Canada.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlynt7vE&md5=318460f3416ed58d8b2d2d358523f15cCAS |

Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.
Biovolume calculation for pelagic and benthic microalgae.Crossref | GoogleScholarGoogle Scholar |

Kagami, M., de Bruin, A., Ibelings, B. W., and Van Donk, E. (2007). Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiology 578, 113–129.
Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics.Crossref | GoogleScholarGoogle Scholar |

Kirst, G. O. (1996). Osmotic adjustment in phytoplankton and macroalgae. In ‘Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds’. (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst.) pp. 121–129. (Springer: New York, NY, USA.)

Kühn, S. F. (1998). Infection of Coscinodiscus spp. by the parasitoid nanoflagellate Pirsonia diadema: II. Selective infection behaviour for host species and individual host cells. Journal of Plankton Research 20, 443–454.
Infection of Coscinodiscus spp. by the parasitoid nanoflagellate Pirsonia diadema: II. Selective infection behaviour for host species and individual host cells.Crossref | GoogleScholarGoogle Scholar |

Kühn, S. F., and Hofmann, M. (1999). Infection of Coscinodiscus granii by the parasitoid nanoflagellate Pirsonia diadema: III. Effects of turbulence on the incidence of infection. Journal of Plankton Research 21, 2323–2340.
Infection of Coscinodiscus granii by the parasitoid nanoflagellate Pirsonia diadema: III. Effects of turbulence on the incidence of infection.Crossref | GoogleScholarGoogle Scholar |

Kühn, S. F., and Köhler-Rink, S. (2008). pH effect on the susceptibility to parasitoid infection in the marine diatom Coscinodiscus spp. (Bacillariophyceae). Marine Biology 154, 109–116.
pH effect on the susceptibility to parasitoid infection in the marine diatom Coscinodiscus spp. (Bacillariophyceae).Crossref | GoogleScholarGoogle Scholar |

Kühn, S. F., Drebes, G., and Schnepf, E. (1996). Five new species of the nanoflagellate Pirsonia in the German Bight, North Sea, feeding on planktic diatoms. Helgoländer Meeresuntersuchungen 50, 205–222.
Five new species of the nanoflagellate Pirsonia in the German Bight, North Sea, feeding on planktic diatoms.Crossref | GoogleScholarGoogle Scholar |

Kühn, S., Medlin, L., and Eller, G. (2004). Phylogenetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov. Protist 155, 143–156.
Phylogenetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov.Crossref | GoogleScholarGoogle Scholar |

Mazzillo, F. F. M., Ryan, J. P., and Silver, M. W. (2011). Parasitism as a biological control agent of dinoflagellate blooms in the California Current System. Harmful Algae 10, 763–773.
Parasitism as a biological control agent of dinoflagellate blooms in the California Current System.Crossref | GoogleScholarGoogle Scholar |

McAlice, B. J. (1971). Phytoplankton sampling with the Sedgwick–Rafter cell. Limnology and Oceanography 16, 19–28.
Phytoplankton sampling with the Sedgwick–Rafter cell.Crossref | GoogleScholarGoogle Scholar |

Menden-Deuer, S., and Lessard, E. J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and of the protist plankton. Limnology and Oceanography 45, 569–579.
Carbon to volume relationships for dinoflagellates, diatoms, and of the protist plankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsV2ltLk%3D&md5=f6de138b20d0c214a6998e32aab3f4bfCAS |

Park, M. G., Yih, W., and Coats, D. W. (2004). Parasites and phytoplankton, with special emphasis on dinoflagellate infections. The Journal of Eukaryotic Microbiology 51, 145–155.
Parasites and phytoplankton, with special emphasis on dinoflagellate infections.Crossref | GoogleScholarGoogle Scholar |

Riessen, H. P., Linley, R. D., Altshuler, I., Rabus, M., Söllradl, T., Clausen-Schaumann, H., Laforsch, C., and Yan, N. D. (2012). Changes in water chemistry can disable plankton prey defenses. Proceedings of the National Academy of Sciences of the United States of America 109, 15377–15382.
Changes in water chemistry can disable plankton prey defenses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyjtLrE&md5=e00b07079a70015396cd9449d7baf738CAS |

Round, F. E., Crawford, R. M., and Mann, D. G. (1990). ‘The Diatoms: Biology and Morphology of the Genera.’ (Cambridge University Press: Cambridge, UK.)

Salomon, P. S., Granéli, E., Neves, M. H. C. B., and Rodriguez, E. G. (2009). Infection by Amoebophrya spp. parasitoids of dinoflagellates in a tropical marine coastal area. Aquatic Microbial Ecology 55, 143–153.
Infection by Amoebophrya spp. parasitoids of dinoflagellates in a tropical marine coastal area.Crossref | GoogleScholarGoogle Scholar |

Sommer, U., Adrian, R., De Senerpont Domis, L., Elser, J. J., Gaedke, U., Ibelings, B., Jeppesen, E., Lürling, M., Molinero, J. C., Mooij, W. M., and Van Donk, E. (2012). Beyond the PEG-model: mechanisms driving plankton succession. Annual Review of Ecology Evolution and Systematics 43, 429–448.
Beyond the PEG-model: mechanisms driving plankton succession.Crossref | GoogleScholarGoogle Scholar |

Spetter, C. V., Popovich, C. A., Arias, A., Asteasuain, R. O., Freije, R. H., and Marcovecchio, J. E. (2013). Role of nutrients in phytoplankton development during a winter diatom bloom in a eutrophic South American estuary (Bahía Blanca, Argentina). Journal of Coastal Research 31, 76–87.

Tillmann, U., Hesse, K.-J., and Tillmann, A. (1999). Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea. Journal of Sea Research 42, 255–261.
Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea.Crossref | GoogleScholarGoogle Scholar |

Tomas, C. R. (1997). ‘Identifying Marine Phytoplankton.’ (Academic Press: London, UK.)