Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

First report of Aphanizomenon favaloroi occurrence in Europe associated with saxitoxins and a massive fish kill in Lake Vistonis, Greece

Maria Moustaka-Gouni A E , Anastasia Hiskia B , Savvas Genitsaris A , Matina Katsiapi A , Korina Manolidi B , Sevasti-Kiriaki Zervou B , Christophoros Christophoridis B , Theodoros M. Triantis B , Triantafyllos Kaloudis C and Sotiris Orfanidis D
+ Author Affiliations
- Author Affiliations

A School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.

B Institute of Nanoscience and Nanotechnology, National Center for Scientific Research ‘Demokritos’, GR-15341 Agia Paraskevi, Athens, Greece.

C Water Quality Department, Athens Water Supply and Sewerage Company (EYDAP SA), Oropou 156, GR-11146 Galatsi, Athens, Greece.

D National Agricultural Research Foundation, Fisheries Research Institute, GR-64007 Nea Peramos, Kavala, Greece.

E Corresponding author. Email: mmustaka@bio.auth.gr

Marine and Freshwater Research 68(4) 793-800 https://doi.org/10.1071/MF16029
Submitted: 27 January 2016  Accepted: 12 April 2016   Published: 29 June 2016

Abstract

The cyanobacterium Aphanizomenon favaloroi was identified for the first time in Europe in the Mediterranean brackish Lake Vistonis during July–August 2014. It formed a dense bloom (from 16 × 106 to 81 × 106 trichomes L–1), causing a brown colouration of the lake water. When A. favaloroi formed 100% of the total phytoplankton biomass (44 mg L–1), saxitoxins (saxitoxin and neo-saxitoxin) were detected in the lake seston (42 and 17 μg g–1 phytoplankton dry weight respectively), which was screened for saxitoxins, cylindrospermopsin, anatoxin-a, microcystins and nodularin. A massive fish kill coincided with the A. favaloroi bloom. This new saxitoxin-producing species of cyanobacteria, with traits for successful dispersal, may pose a health risk to animals and humans and cause adverse effects on water quality and water services because of its expansion potential.

Additional keywords: brackish Mediterranean Lake, cyanobacterial bloom.


References

Al-Tebrineh, J., Kaan Mihali, T., Pomati, F., and Neilan, B. A. (2010). `Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR. Applied and Environmental Microbiology 76, 7836–7842.
`Detection of saxitoxin-producing cyanobacteria and Anabaena circinalis in environmental water blooms by quantitative PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFKnuw%3D%3D&md5=7317a1e82c18295d2a537c228435f285CAS | 20935128PubMed |

Ballot, A., Ramm, J., Rundberget, T., Kaplan-Levy, R. N., Hadas, O., Sukenik, A., and Wiedner, C. (2011). Occurrence of non-cylindrospermopsin-producing Aphanizomenon ovalisporum and Anabaena bergii in Lake Kinneret (Israel). Journal of Plankton Research 33, 1736–1746.
Occurrence of non-cylindrospermopsin-producing Aphanizomenon ovalisporum and Anabaena bergii in Lake Kinneret (Israel).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Oiu7fM&md5=8a4ea9103e29cfcea63389ebc9f93ea9CAS |

Ballot, A., Sandvik, M., Rundberget, T., Botha, C. J., and Miles, C. O. (2014). Diversity of cyanobacteria and cyanotoxins in Hartbeespoort Dam, South Africa. Marine and Freshwater Research 65, 175–189.
Diversity of cyanobacteria and cyanotoxins in Hartbeespoort Dam, South Africa.Crossref | GoogleScholarGoogle Scholar |

Bartram, J., Burch, M., Falconer, I. R., Jones, G., and Kuiper-Goodman, T. (1999). Situation assessment, planning and management. In ‘Toxic Cyanobacteria in Water’. (Eds I. Chorus and J. Bartram.) pp. 179–209. (E & FN Spon.)

Brooks, W. B., Grover, J. P., and Roelke, D. L. (2011). Prymnesium parvum: an emerging threat to inland waters. Environmental Toxicology and Chemistry 30, 1955–1964.
Prymnesium parvum: an emerging threat to inland waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOltbfP&md5=a150c158f7da11de5e907491f91ab048CAS |

Casero, M. C., Ballot, A., Agha, R., Quesada, A., and Cirés, S. (2014). Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. Harmful Algae 37, 28–37.
Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSqsLrK&md5=0fd509fb178094cded568f587e2c95efCAS |

Cirés, S., Wörmer, L., Ballot, A., Agha, R., Wiedner, C., Velazquez, D., Casero, M. C., and Quesada, A. (2014). Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing Nostocales cyanobacteria from Mediterranean Europe (Spain). Applied and Environmental Microbiology 80, 1359–1370.
Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing Nostocales cyanobacteria from Mediterranean Europe (Spain).Crossref | GoogleScholarGoogle Scholar | 24334673PubMed |

da Silva, C. A., Oba, E. T., Ramsdorf, W. A., Magalhães, V. F., Cestari, M. M., Ribeiro, C. A. O., and de Assis, H. C. S. (2011). First report about saxitoxins in freshwater fish Hoplias malabaricus through trophic exposure. Toxicon 57, 141–147.
First report about saxitoxins in freshwater fish Hoplias malabaricus through trophic exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFWq&md5=4f371935db35aa04d4bf29a2386d3075CAS | 21073887PubMed |

Dias, E., Pereira, P., and Franca, S. (2002). Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (Cyanobacteria). Journal of Phycology 38, 705–712.
Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (Cyanobacteria).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVCqtr0%3D&md5=5e2be9c4aaf03f41f4d45ba708353ac1CAS |

Dimitrakopoulos, I. K., Kaloudis, T. S., Hiskia, A. E., Thomaidis, N. S., and Koupparis, M. A. (2010). Development of a fast and selective method for the sensitive determination of anatoxin-a in lake waters using liquid chromatography–tandem mass spectrometry and phenylalanine-d5 as internal standard. Analytical and Bioanalytical Chemistry 397, 2245–2252.
Development of a fast and selective method for the sensitive determination of anatoxin-a in lake waters using liquid chromatography–tandem mass spectrometry and phenylalanine-d5 as internal standard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVyhsrg%3D&md5=06676b1d29667ecbee77fb0dea646ef7CAS | 20437228PubMed |

European Commission (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L327, 1–72.

Harland, F., Wood, S. A., Broady, P., Williamson, W., and Gaw, S. (2015). Changes in saxitoxin-production through growth phases in the metaphytic cyanobacterium Scytonema cf. crispum. Toxicon 103, 74–79.
Changes in saxitoxin-production through growth phases in the metaphytic cyanobacterium Scytonema cf. crispum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVKhtr3N&md5=ce3af4dc8d6a4f6aafb103da2f4021afCAS | 26091875PubMed |

Hindák, F., and Moustaka-Gouni, M. (1988). Planktic cyanophytes of Lake Volvi, Greece. Archiv für Hydrobiologie 80, 497–528.

Hoyer, M. V., Watson, D. I., Willis, D. J., and Canfield, D. E. (2009). Fish kills in Florida’s canals, creeks/rivers, and ponds/lakes. Journal of Aquatic Plant Management 47, 53–56.

Huber-Pestalozzi, G. (1938). Das Phytoplankton des Süßwassers. Systematik und Biologie. I. Allgemein Teil., Blaualgen, Bakterien, Pilze. In ‘Die Binnengwässer’. (Ed. A. Thienemann.) pp. 1–342. (Schweizerbart: Stuttgart.)

International Organization for Standardization (2005) ‘Water Quality – Determination of Microcystins – Method Using Solid Phase Extraction (SPE) and High Performance Liquid Chromatography (HPLC) with Ultraviolet (UV) Detection.’ (ISO: Geneva.)

Kaloudis, T. S., Zervou, S. K., Tsimeli, K., Triantis, T. M., Fotiou, T., and Hiskia, A. (2013). Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece. Journal of Hazardous Materials 263, 105–115.
Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS. Monitoring of Lake Marathonas, a water reservoir of Athens, Greece.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yktrvP&md5=a55bc04fdee1f69b0f77e0e5833d983bCAS |

Koutrakis, E. T., Tsikliras, A. C., and Sinis, A. I. (2005). Temporal variability of the ichthyofauna in a Northern Aegean coastal lagoon (Greece). Influence of environmental factors. Hydrobiologia 543, 245–257.
Temporal variability of the ichthyofauna in a Northern Aegean coastal lagoon (Greece). Influence of environmental factors.Crossref | GoogleScholarGoogle Scholar |

Koutrakis, E. T., Emfietzis, G., Sylaios, G., Zoidou, M., Katsiapi, M., and Moustaka-Gouni, M. (2016). Massive fish mortality in Ismarida lake, Greece: identification of drivers contributing to the mortality event. Mediterranean Marine Science 17, 280–291.
Massive fish mortality in Ismarida lake, Greece: identification of drivers contributing to the mortality event.Crossref | GoogleScholarGoogle Scholar |

Lampert, W., and Sommer, U. (2007). ‘Limnoecology’, 2nd edn. (Oxford University Press: New York.)

Ledreux, A., Thomazeau, S., Catherine, A., Duval, C., Yepremian, C., Marie, A., and Bernard, C. (2010). Evidence for saxitoxins production by the cyanobacterium Aphanizomenon gracile in a French recreational water body. Harmful Algae 10, 88–97.
Evidence for saxitoxins production by the cyanobacterium Aphanizomenon gracile in a French recreational water body.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1KrsbfO&md5=ebf032f8ea82514ccd7325675cda28f8CAS |

Moisander, P. H., McClinton, E., and Pearl, H. W. (2002). Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microbial Ecology 43, 432–442.
Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsFahs7c%3D&md5=c9db60eaf88a8e3832a60a2b62968743CAS | 12043002PubMed |

Moustaka-Gouni, M., Vardaka, E., Michaloudi, E., Kormas, K. A., Tryfon, E., Mihalatou, H., Gkelis, S., and Lanaras, T. (2006). Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms. Limnology and Oceanography 51, 715–727.
Plankton food web structure in a eutrophic polymictic lake with a history in toxic cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar |

Moustaka-Gouni, M., Kormas, K. A., Polykarpou, P., Gkelis, S., Bobori, D., and Vardaka, E. (2010). Polyphasic evaluation of Aphanizomenon issatschenkoi and Raphidiopsis mediterranea in a Mediterranean lake. Journal of Plankton Research 32, 927–936.
Polyphasic evaluation of Aphanizomenon issatschenkoi and Raphidiopsis mediterranea in a Mediterranean lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVWrsr8%3D&md5=606c8e7300264ddac9848d0c84e8a219CAS |

Nicholson, B., Papageorgiou, J., Humpage, A., Steffensen, D., Monis, P., Linke, T., Fanok, S., Shaw, G., Eaglesham, G., Davis, B., Wickramasinghe, W., Stewart, I., Carmichael, W., and Servaites, J. (2007). ‘Determination and Significance of Emerging Algal Toxins (Cyanotoxins).’ (American Water Works Association: London.)

Orfanidis, S., Nakou, K., Ofridopoulou, A., Dinas, E., Stamatis, N., and Berberidis, Th. (2015). Measurements of abiotic and biotic parameters of the estuary complex Vistonida-Porto Lagos in July 2014 to diagnose the causes of sudden death fish. Technical Report of Fisheries Research Institute (HAO-DEMETER), Nea Peramos, Kavala, Greece. [In Greek]

Otaño, S. H. (2012). Aphanizomenon favaloroi spec. nov. (Cyanobacteria, Nostocales) a new planktic species from Argentina. Algological Studies 138, 27–36.
Aphanizomenon favaloroi spec. nov. (Cyanobacteria, Nostocales) a new planktic species from Argentina.Crossref | GoogleScholarGoogle Scholar |

Pearson, L., Mihali, T., Moffitt, M., Kellmann, R., and Neilan, B. (2010). On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs 8, 1650–1680.
On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVChtrk%3D&md5=47ebc95bc9a9d64fb7d8e02b866fb331CAS | 20559491PubMed |

Rajaniemi, P., Hrouzek, P., Kastovska, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J., and Sivonen, K. (2005). Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 55, 11–26.
Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1aru70%3D&md5=ecbeee25fa44697db96c3bd4ce8b6696CAS | 15653847PubMed |

Roelke, D. L., Grover, J. P., Brooks, B. W., Glass, J., Buzan, D., Southard, G. M., Fries, L., Gable, G. M., Schwierzke-Wade, L., Byrd, M., and Nelson, J. (2011). A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity. Journal of Plankton Research 33, 243–253.
A decade of fish-killing Prymnesium parvum blooms in Texas: roles of inflow and salinity.Crossref | GoogleScholarGoogle Scholar |

Utermöhl, H (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilung Internationale Vereinigung für Theoretische unde Amgewandte Limnologie 9, 1–38.

Vardaka, E., Moustaka-Gouni, M., Cook, C. M., and Lanaras, T. (2005). Cyanobacterial blooms and water quality in Greek waterbodies. Journal of Applied Phycology 17, 391–401.
Cyanobacterial blooms and water quality in Greek waterbodies.Crossref | GoogleScholarGoogle Scholar |

Velzeboer, R. M. A., Baker, P., Rositano, J., Heresztyn, T., Codd, G. A., and Raggett, S. L. (2000). Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia. Phycologia 39, 395–407.
Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia.Crossref | GoogleScholarGoogle Scholar |

Wilk-Woźniak, E., Solarz, W., Najberek, K., and Pociecha, A. (2016). Alien cyanobacteria: an unsolved part of the ‘expansion and evolution’ jigsaw puzzle? Hydrobiologia 764, 65–79.
Alien cyanobacteria: an unsolved part of the ‘expansion and evolution’ jigsaw puzzle?Crossref | GoogleScholarGoogle Scholar |

Winder, M., and Sommer, U. (2012). Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16.
Phytoplankton response to a changing climate.Crossref | GoogleScholarGoogle Scholar |

Wörmer, L., Cirés, S., Agha, R., Verdugo, M., de Hoyos, C., and Quesada, A. (2011). First detection of cyanobacterial PSP (paralytic shellfish poisoning) toxins in Spanish freshwaters. Toxicon 57, 918–921.
First detection of cyanobacterial PSP (paralytic shellfish poisoning) toxins in Spanish freshwaters.Crossref | GoogleScholarGoogle Scholar | 21376073PubMed |

Zapomělová, E., Jezberová, J., Hrouzek, P., Hisem, D., Reháková, K., and Komárková, J. (2009). Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana). Journal of Phycology 45, 1363–1373.
Polyphasic characterization of three strains of Anabaena reniformis and Aphanizomenon aphanizomenoides (cyanobacteria) and their reclassification to Sphaerospermum gen. nov. (incl. Anabaena kisseleviana).Crossref | GoogleScholarGoogle Scholar | 27032594PubMed |

Zapomělová, E., Skacelova, O., Pumann, P., Kopp, R., and Janecek, E. (2012). Biogeographically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova). Hydrobiologia 698, 353–365.
Biogeographically interesting planktonic Nostocales (Cyanobacteria) in the Czech Republic and their polyphasic evaluation resulting in taxonomic revisions of Anabaena bergii Ostenfeld 1908 (Chrysosporum gen. nov.) and A. tenericaulis Nygaard 1949 (Dolichospermum tenericaule comb. nova).Crossref | GoogleScholarGoogle Scholar |