Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Bioaccumulation, oxidative stress and cellular damage in the intertidal gastropod Bembicium nanum exposed to a metal contamination gradient

Rodney P. Ubrihien A B , Anne M. Taylor A and William A. Maher A
+ Author Affiliations
- Author Affiliations

A Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2617, Australia.

B Corresponding author. Email: rod.ubrihien@canberra.edu.au

Marine and Freshwater Research 68(5) 922-930 https://doi.org/10.1071/MF16026
Submitted: 25 January 2016  Accepted: 20 April 2016   Published: 18 July 2016

Abstract

The high concentration of population and industry in coastal areas leads to contamination. In situ biomonitors provide a reliable and cost-effective means of assessing the effects of contamination. Rigorous assessment of biomonitors is required to establish links between biomarker measurements and contamination in the environment. The aims of the present study were to assess the effects of metal contamination on the intertidal gastropod Bembicium nanum and to validate biomarkers for use in this species. B. nanum was sampled from a metal contamination gradient emanating from Port Kembla (NSW, Australia). Tissue metal concentrations were related to the condition of organisms as assessed using the biomarkers total antioxidant capacity, lipid peroxidation and lysosomal destabilisation. Total tissue metal concentrations were highest in Port Kembla organisms, with copper contributing 56% of metals measured in organisms from this site. B. nanum from Port Kembla also had significantly higher lysosomal destabilisation, being 36% higher than Kiama and 80% higher than Shellharbour over the combined sampling times. Lysosomal destabilisation was related to total tissue metal concentration and Cu tissue concentration. The results of the present study establish B. nanum as a bioindicator of metal contamination, with effects primarily relating to copper, and support previous work on the species as an effective biomonitor of bioavailable metal.

Additional keywords: antioxidant capacity, biomarkers, copper, lipid peroxidation, lysosomal destabilisation, temporal variation.


References

Al-Subiai, S. N., Moody, A. J., Mustafa, S. A., and Jha, A. N. (2011). A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis. Ecotoxicology and Environmental Safety 74, 1913–1920.
A multiple biomarker approach to investigate the effects of copper on the marine bivalve mollusc, Mytilus edulis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ehs7vP&md5=25588d4b87acf49cf793d725ede01e53CAS | 21851981PubMed |

Baldwin, S., Deaker, M., and Maher, W. (1994). Low-volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst 119, 1701–1704.
Low-volume microwave digestion of marine biological tissues for the measurement of trace elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtVSgtLo%3D&md5=8a9a1a11f77fab7427fba3e2a2525586CAS | 7978323PubMed |

BlueScope Steel (2010). Our Company: Australia and New Zealand. Available at http://www.bluescopesteel.com/responsibilities/environment [Verified 18 May 2012].

Bocchetti, R., and Regoli, F. (2006). Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea. Chemosphere 65, 913–921.
Seasonal variability of oxidative biomarkers, lysosomal parameters, metallothioneins and peroxisomal enzymes in the Mediterranean mussel Mytilus galloprovincialis from Adriatic Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVKkurg%3D&md5=afe21cb71b557d198eb51906c3c15f39CAS | 16678235PubMed |

Bureau of Meteorology (2012). Monthly Water Temperatures for Port Kembla. Available at http://www.bom.gov.au/climate/averages/tables/cw_068053.shtml [Verified 13 June 2012].

Cho, S.-M., and Jeong, W.-G. (2005). Spawning impact on lysosomal stability of the Pacific oyster, Crassostrea gigas. Aquaculture 244, 383–387.
Spawning impact on lysosomal stability of the Pacific oyster, Crassostrea gigas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFKisw%3D%3D&md5=855277dbfa8739cde0716d1f12558b20CAS |

Depledge, M. H., Aagaard, A., and Györkös, P. (1995). Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers. Marine Pollution Bulletin 31, 19–27.
Assessment of trace metal toxicity using molecular, physiological and behavioural biomarkers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFCnsLc%3D&md5=0feadad6a65d4b371731702d340c1c2bCAS |

Deschaseaux, E. S. M., Taylor, A. M., Maher, W. A., and Davis, A. R. (2010). Cellular responses of encapsulated gastropod embryos to multiple stressors associated with climate change. Journal of Experimental Marine Biology and Ecology 383, 130–136.
Cellular responses of encapsulated gastropod embryos to multiple stressors associated with climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKqt7s%3D&md5=8237322d58420b267a31e68ab21c8391CAS |

Deschaseaux, E., Taylor, A., and Maher, W. (2011). Measure of stress response induced by temperature and salinity changes on hatched larvae of three marine gastropod species. Journal of Experimental Marine Biology and Ecology 397, 121–128.
Measure of stress response induced by temperature and salinity changes on hatched larvae of three marine gastropod species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVajtbw%3D&md5=ca21b7bac5fed607a1784649b789ffe2CAS |

Domouhtsidou, G. P., and Dimitriadis, V. K. (2001). Lysosomal and lipid alterations in the digestive gland of mussels, Mytilus galloprovincialis (L.) as biomarkers of environmental stress. Environmental Pollution 115, 123–137.
Lysosomal and lipid alterations in the digestive gland of mussels, Mytilus galloprovincialis (L.) as biomarkers of environmental stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1yis70%3D&md5=f38fe96ec75dfe1a4d1bece4472f5cb9CAS | 11586767PubMed |

Domouhtsidou, G. P., Dailianis, S., Kaloyianni, M., and Dimitriadis, V. K. (2004). Lysosomal membrane stability and metallothionein content in Mytilus galloprovincialis (L.), as biomarkers: combination with trace metal concentrations. Marine Pollution Bulletin 48, 572–586.
Lysosomal membrane stability and metallothionein content in Mytilus galloprovincialis (L.), as biomarkers: combination with trace metal concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht12qs7g%3D&md5=95ffa18da50f2c8fefe08c2804e80b85CAS | 14980473PubMed |

Edgar, G. J. (2008) ‘Australian Marine Life: The Plants and Animals of Temperate Waters’, 2nd edn. (Reed New Holland: Sydney.)

Edge, K. J., Dafforn, K. A., Simpson, S. L., Roach, A. C., and Johnston, E. L. (2014). A biomarker of contaminant exposure is effective in large scale assessment of ten estuaries. Chemosphere 100, 16–26.
A biomarker of contaminant exposure is effective in large scale assessment of ten estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVyqt7Y%3D&md5=545fe189a85431036160669b38ec6291CAS | 24468111PubMed |

Fernley, P. W., Moore, M. N., Lowe, D. M., Donkin, P., and Evans, S. (2000). Impact of the Sea Empress oil spill on lysosomal stability in mussel blood cells. Marine Environmental Research 50, 451–455.
Impact of the Sea Empress oil spill on lysosomal stability in mussel blood cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFyhs78%3D&md5=ccb2eb0062ad9161c343a25334fa97b4CAS | 11460733PubMed |

Foster, S., Maher, W., Schmeisser, E., Taylor, A., Krikowa, F., and Apte, S. (2006). Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited. Environmental Chemistry 3, 304–315.
Arsenic species in a rocky intertidal marine food chain in NSW, Australia, revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVaksr4%3D&md5=1f1440f8cf4ee2d72a05b8221d33df4aCAS |

Galloway, T. S., Brown, R. J., Browne, M. A., Dissanayake, A., Lowe, D., Jones, M. B., and Depledge, M. H. (2004). Ecosystem management bioindicators: the ECOMAN project – a multi-biomarker approach to ecosystem management. Marine Environmental Research 58, 233–237.
Ecosystem management bioindicators: the ECOMAN project – a multi-biomarker approach to ecosystem management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkslSisLc%3D&md5=2d16fff5ee751b4d53a8b3d774cab791CAS | 15178037PubMed |

Gay, D., and Maher, W. (2003). Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium nanum and their potential use as a biomonitor of trace metals. Water Research 37, 2173–2185.
Natural variation of copper, zinc, cadmium and selenium concentrations in Bembicium nanum and their potential use as a biomonitor of trace metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1Clurg%3D&md5=961b0f33cecfd9dd0644e8c335aeb625CAS | 12691903PubMed |

Izagirre, U., and Marigómez, I. (2009). Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index. Environmental Pollution 157, 1544–1553.
Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2ksrw%3D&md5=7bd7ecfe75b2b0cb44f343577866127eCAS | 19208445PubMed |

Luoma, S. N., and Rainbow, P. S. (2008) ‘Metal Contamination in Aquatic Environments.’ (Cambridge University Press: New York.)

Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101, 13–30.
Environmentally induced oxidative stress in aquatic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgsLjJ&md5=b187787e44d43a1a3ca593b0435342e1CAS | 21074869PubMed |

Maher, W., Forster, S., Krikowa, F., Snitch, P., Chapple, G., and Craig, P. (2001). Measurement of trace elements and phosphorus in marine animal and plant tissue by low-volume microwave digestion and ICP-MS. Atomic Spectroscopy 22, 361–369.
| 1:CAS:528:DC%2BD3MXovVOisbs%3D&md5=78a9d160816a47418be637279b6fb186CAS |

Moncheva, S., Trakhtenberg, S., Katrich, E., Zemser, M., Goshev, I., Toledo, F., Arancibia-Avila, P., Doncheva, V., and Gorinstein, S. (2004). Total antioxidant capacity in the black mussel (Mytilus galloprovincialis) from Black Sea coasts. Estuarine, Coastal and Shelf Science 59, 475–484.
Total antioxidant capacity in the black mussel (Mytilus galloprovincialis) from Black Sea coasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFCisbo%3D&md5=1282469b18da470415cdc54bc9df970cCAS |

Moore, M. N. (1982). Lysosomes and environmental stress. Marine Pollution Bulletin 13, 42–43.
Lysosomes and environmental stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XhtlOiu78%3D&md5=4ebf8be80dd93a8bee6e637cf8b05b77CAS |

Moore, M. N. (1988). Cytochemical responses of the lysosomal system and NADPH–ferrihemoprotein reductase in molluscan digestive cells to environmental and experimental exposure to xenobiotics. Marine Ecology Progress Series 46, 81–89.
Cytochemical responses of the lysosomal system and NADPH–ferrihemoprotein reductase in molluscan digestive cells to environmental and experimental exposure to xenobiotics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1Cjt74%3D&md5=a2e48fe3e4dd4affcddaeeee99a7ae75CAS |

Moore, M. N., Depledge, M. H., Readman, J. W., and Paul Leonard, D. R. (2004). An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis 552, 247–268.
An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1Knt74%3D&md5=bd480a7a951be64f27acbc23660b60c2CAS | 15288556PubMed |

Nicholson, S. (2001). Ecocytological and toxicological responses to copper in Perna viridis (L.) (Bivalvia: Mytilidae) haemocyte lysosomal membranes. Chemosphere 45, 399–407.
Ecocytological and toxicological responses to copper in Perna viridis (L.) (Bivalvia: Mytilidae) haemocyte lysosomal membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVymtr0%3D&md5=842ef56062ac78f64ece8d0893478c17CAS | 11680735PubMed |

Nicholson, S. (2003). Lysosomal membrane stability, phagocytosis and tolerance to emersion in the mussel Perna viridis (Bivalvia: Mytilidae) following exposure to acute, sublethal, copper. Chemosphere 52, 1147–1151.
Lysosomal membrane stability, phagocytosis and tolerance to emersion in the mussel Perna viridis (Bivalvia: Mytilidae) following exposure to acute, sublethal, copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVCitL0%3D&md5=0ac606780896894f2aaea56df376897eCAS | 12820995PubMed |

Nott, J. A., and Nicolaidou, A. (1989). Metals in gastropods – metabolism and bioreduction. Marine Environmental Research 28, 201–205.
Metals in gastropods – metabolism and bioreduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit1arsLo%3D&md5=0862f2db8b6fc85fbf4a6a52ef6d8d76CAS |

Orren, M. J., Eagle, G. A., Hennig, H. F. K. O., and Green, A. (1980). Variations in trace metal content of the mussel Choromytilus meridionalis (Kr.) with season and sex. Marine Pollution Bulletin 11, 253–257.
Variations in trace metal content of the mussel Choromytilus meridionalis (Kr.) with season and sex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmtlGltrg%3D&md5=482c7ec83f297aaace72d94c3eecb9a6CAS |

Pannunzio, T. M., and Storey, K. B. (1998). Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea. Journal of Experimental Marine Biology and Ecology 221, 277–292.
Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvVSnur8%3D&md5=5e5cb1ed0c284d7c60da1ca8d51f39fdCAS |

Petrović, S., Ozretic, B., Krajnovic-Ozretic, M., and Bobinac, D. (2001). Lysosomal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in a field study. Marine Pollution Bulletin 42, 1373–1378.
Lysosomal membrane stability and metallothioneins in digestive gland of mussels (Mytilus galloprovincialis Lam.) as biomarkers in a field study.Crossref | GoogleScholarGoogle Scholar | 11827125PubMed |

Reid, D. J., and MacFarlane, G. R. (2003). Potential biomarkers of crude oil exposure in the gastropod mollusc, Austrocochlea porcata: laboratory and manipulative field studies. Environmental Pollution 126, 147–155.
Potential biomarkers of crude oil exposure in the gastropod mollusc, Austrocochlea porcata: laboratory and manipulative field studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsVGru7g%3D&md5=5d4dc1bd6278bf88d1b95e03c0b43bf7CAS | 12927486PubMed |

Ringwood, A. H., Hoguet, J., and Keppler, C. J. (2002). Seasonal variation in lysosomal destabilization in oysters, Crassostrea virginica. Marine Environmental Research 54, 793–797.
Seasonal variation in lysosomal destabilization in oysters, Crassostrea virginica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmsl2nu7c%3D&md5=aea74446e1f1a76d1e846ecb114ed53fCAS | 12408652PubMed |

Ringwood, A. H., Hoguet, J., Keppler, C. J., Gielazyn, M. L., Ward, B. P., and Rourk, A. R. (2003) ‘Cellular Biomarkers (Lysosomal Destabilisation, Gluthathione and Lipid Peroxidation) in Three Common Estuarine Species: a Methods Handbook.’ (Marine Resources Research Institute: Charleston, SC, USA.)

Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E., and Meyer, J. S. (2001). Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environmental Toxicology and Chemistry 20, 2397–2402.
Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWmsw%3D%3D&md5=50887e763afdc63a9affb6dbedeb8b25CAS | 11596775PubMed |

Taylor, A., and Maher, W. (2006). The use of two marine gastropods, Austrocochlea constricta and Bembicium auratum, as biomonitors of zinc, cadmium and copper exposure: effect of tissue distribution, gender, reproductive state and temporal variation. Journal of Coastal Research 22, 298–306.
The use of two marine gastropods, Austrocochlea constricta and Bembicium auratum, as biomonitors of zinc, cadmium and copper exposure: effect of tissue distribution, gender, reproductive state and temporal variation.Crossref | GoogleScholarGoogle Scholar |

Taylor, A. M., and Maher, W. A. (2010). Establishing metal exposure–dose–response relationships in marine organisms: illustrated with a case study of cadmium in Teliina deltoidalis. In ‘New Oceanography Research Developments: Marine Chemistry, Ocean Floor Analysis and Marine Phytoplankton’. (Eds L. Martorino and K. Puopolo.) pp. 1–57. (Nova Science Publishers: New York.)

Taylor, A. M., and Maher, W. A. (2012a). Exposure–dose–response of Anadara trapezia to metal contaminated estuarine sediments. 2. Lead spiked sediments. Aquatic Toxicology 116–117, 79–89.
Exposure–dose–response of Anadara trapezia to metal contaminated estuarine sediments. 2. Lead spiked sediments.Crossref | GoogleScholarGoogle Scholar | 22466358PubMed |

Taylor, A. M., and Maher, W. A. (2012b). Exposure–dose–response of Anadara trapezia to metal contaminated estuarine sediments: 3. Selenium spiked sediments. Aquatic Toxicology 124–125, 152–162.
Exposure–dose–response of Anadara trapezia to metal contaminated estuarine sediments: 3. Selenium spiked sediments.Crossref | GoogleScholarGoogle Scholar | 22963858PubMed |

Taylor, A., and Maher, W. (2016). Developing a sentinel mollusc species for toxicity assessment: metal exposure, dose and response – laboratory v. field exposures and resident organisms. Environmental Chemistry 13, 434–446.
Developing a sentinel mollusc species for toxicity assessment: metal exposure, dose and response – laboratory v. field exposures and resident organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xos1Wjtrw%3D&md5=b2c3171c321d7f974c4a3ce5cca637e0CAS |

van der Oost, R., Porte-Visa, C., and van den Brink, N. W. (2005). Biomarkers in environmental assessment. In ‘Ecological Testing of Marine and Freshwater Ecosystems: Emerging Techniques, Trends and Strategies’. (Eds P. J. den Besten and M. Munawar.) pp. 87–152. (CRC Press: Boca Raton, FL.)