Crustacean assemblages of coastal wetlands from fragmented and scarcely isolated islands compared with the mainland
Paloma Lucena-Moya A C , Stéphanie Gascón B , Daniel Boix B , Isabel Pardo A , Jordi Sala B and Xavier D. Quintana BA Department of Ecology and Animal Biology, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain.
B GRECO, Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, E-17071 Girona, Spain.
C Corresponding author. Present address: Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie, 260, FI-10900 Hanko, Finland. Email: palomalucenamoya@gmail.com
Marine and Freshwater Research 68(5) 889-899 https://doi.org/10.1071/MF15457
Submitted: 14 December 2015 Accepted: 5 May 2016 Published: 18 July 2016
Abstract
The present study compared crustacean assemblages from coastal wetlands between a fragment archipelago and a landmass. The study included four typical crustacean taxonomic groups (i.e. Cladocera, Copepoda, Ostracoda and Malacostraca) from the Balearic Archipelago region as an example of a fragment island (‘Archipelago’) and the Catalonia region as the landmass (‘Mainland’; Spanish Mediterranean coast). We tested null hypotheses based on the expected similarity between Archipelago and Mainland in terms of crustacean assemblages and biodiversity. Similar relationships of those community attributes with environmental variables were also expected in both regions. The results partially met the null hypotheses. We found that crustacean taxonomic composition varied between Archipelago and Mainland, likely due to peculiar biological and biogeographical processes acting in the Archipelago. The relationship between crustacean assemblages and the environmental variables was mostly similar between Archipelago and Mainland, as expected. Both regions also showed similar patterns of species distribution (i.e. Archipelago and Mainland coastal wetlands were characterised by a few dominant species). This result could be masked by the ‘filter’ effect exercised by the harsh conditions of coastal wetlands. Moreover, the total diversity values (gamma biodiversity) in the Archipelago were similar to the values for the Mainland, supporting the hypothesis that fragment islands can be of substantial value for the conservation of global biodiversity.
Additional keywords: crustacean diversity, fragment islands, island biogeography, Mediterranean ecoregion.
References
Alcover, J. A., Sans, A., and Palmer, M. (1998). The extent of extinctions of mammals on islands. Journal of Biogeography 25, 913–918.| The extent of extinctions of mammals on islands.Crossref | GoogleScholarGoogle Scholar |
Allen, P. E., and Dodson, S. I. (2011). Land use and ostracod community structure. Hydrobiologia 668, 203–219.
| Land use and ostracod community structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVCktb4%3D&md5=669d1a1d19c81ac951ade9e7b01073e9CAS |
Alvarez Cobelas, M., Rojo, C., and Angeler, D. G. (2005). Mediterranean limnology: current status, gaps and the future. Journal of Limnology 64, 13–29.
| Mediterranean limnology: current status, gaps and the future.Crossref | GoogleScholarGoogle Scholar |
Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., and Harrison, S. P. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14, 19–28.
| Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist.Crossref | GoogleScholarGoogle Scholar | 21070562PubMed |
Anton-Pardo, M., and Armengol, X. (2012). Effects of salinity and water temporality on zooplankton community in coastal Mediterranean ponds. Estuarine, Coastal and Shelf Science 114, 93–99.
| Effects of salinity and water temporality on zooplankton community in coastal Mediterranean ponds.Crossref | GoogleScholarGoogle Scholar |
Barbone, E., and Basset, A. (2010). Hydrological constraints to macrobenthic fauna biodiversity in transitional waters ecosystems. Rendiconti Lincei 21, 301–314.
| Hydrological constraints to macrobenthic fauna biodiversity in transitional waters ecosystems.Crossref | GoogleScholarGoogle Scholar |
Barbone, E., Rosati, I., Pinna, M., and Basset, A. (2007). Taxonomic and dimensional structure of benthic macroinvertebrate guilds in the Margherita di Savoia Salt Pans (Italy). Transitional Waters Bulletin 4, 21–31.
Barnes, R. S. K. (1989). The coastal lagoons of Britain: an overview and conservation appraisal. Biological Conservation 49, 295–313.
| The coastal lagoons of Britain: an overview and conservation appraisal.Crossref | GoogleScholarGoogle Scholar |
Barnes, R. S. K. (1995). European coastal lagoons: macrotidal versus microtidal contrasts. Biologia Marina Mediterranea 2, 3–7.
Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19, 134–143.
| Partitioning the turnover and nestedness components of beta diversity.Crossref | GoogleScholarGoogle Scholar |
Baselga, A., Jiménez-Valverde, A., and Niccolini, G. (2007). A multiple-site similarity measure independent of richness. Biology Letters 3, 642–645.
| A multiple-site similarity measure independent of richness.Crossref | GoogleScholarGoogle Scholar | 17925273PubMed |
Basset, A., Sabetta, L., Fonnesua, A., Mouillot, D., do Chi, T., Viaroli, P., Giordani, G., Reizopoulou, S., Abbiati, M., and Carrada, G. C. (2006). Viewpoint: typology in Mediterranean transitional waters: new challenges and perspectives. Aquatic Conservation: Marine and Freshwater Ecosystems 16, 441–455.
| Viewpoint: typology in Mediterranean transitional waters: new challenges and perspectives.Crossref | GoogleScholarGoogle Scholar |
Beklioglu, M., Romo, S., Kagalou, I., Quintana, X. D., and Bécares, E. (2007). State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584, 317–326.
| State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions.Crossref | GoogleScholarGoogle Scholar |
Beladjal, L., Kristof, D., and Mertens, J. (2007). Dispersal of fairy shrimp Chirocephalus diaphanus (Branchiopoda: Anostraca) by the trout (Salmo trutta). Journal of Crustacean Biology 27, 71–73.
| Dispersal of fairy shrimp Chirocephalus diaphanus (Branchiopoda: Anostraca) by the trout (Salmo trutta).Crossref | GoogleScholarGoogle Scholar |
Boix, D., Sala, J., Gascón, S., Martinoy, M., Gifre, J., Brucet, S., Badosa, A., López-Flores, R., and Quintana, X. D. (2007). Comparative biodiversity of crustaceans and aquatic insects from various water body types in coastal Mediterranean wetlands. Hydrobiologia 584, 347–359.
| Comparative biodiversity of crustaceans and aquatic insects from various water body types in coastal Mediterranean wetlands.Crossref | GoogleScholarGoogle Scholar |
Boix, D., Gascón, S., Sala, J., Badosa, A., Brucet, S., López-Flores, R., Martinoy, M., Gifre, J., and Quintana, X. D. (2008). Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597, 53–69.
| Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies.Crossref | GoogleScholarGoogle Scholar |
Bover, P., Quintana, J., and Alcover, J. A. (2008). Three islands, three worlds: paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quaternary International 182, 135–144.
| Three islands, three worlds: paleogeography and evolution of the vertebrate fauna from the Balearic Islands.Crossref | GoogleScholarGoogle Scholar |
Britton, R. H., and Crivelli, A. J. (1993). Wetlands of southern Europe and North Africa: Mediterranean wetlands. In ‘Wetlands of the World I: Inventory, Ecology and Management’. (Eds D. F. Whigham, D. Dykyjova and S. Hejny.) pp. 129–194. (Kluwer, Academic Publishers: Dordrecht.)
Brucet, S., Boix, D., Gascón, S., Sala, J., Quintana, X. D., Badosa, A., Søndergaard, M., Lauridsen, T. L., and Jeppesen, E. (2009). Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32, 692–702.
| Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain).Crossref | GoogleScholarGoogle Scholar |
Brucet, S., Boix, D., Quintana, X. D., Jensen, E., Nathansen, L. W., Trochine, C., Meerhoff, M., Gascón, S., and Jeppesen, E. (2010). Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: Implications for effects of climate change. Limnology and Oceanography 55, 1697–1711.
| Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: Implications for effects of climate change.Crossref | GoogleScholarGoogle Scholar |
Cardillo, M. (2003). Biological determinants of extinction risk: why are smaller species less vulnerable? Animal Conservation 6, 63–69.
| Biological determinants of extinction risk: why are smaller species less vulnerable?Crossref | GoogleScholarGoogle Scholar |
Caujapé-Castells, J., Tye, A., Crawford, D. J., Santos-Guerra, A., Sakai, A., Beaver, K., Lobin, W., Florens, F. V., Moura, M., Jardim, R., and Gómes, I. (2010). Conservation of oceanic island floras: present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics 12, 107–129.
| Conservation of oceanic island floras: present and future global challenges.Crossref | GoogleScholarGoogle Scholar |
Chalcraft, D. R., Williams, J. W., Smith, M., and Willig, M. R. (2004). Scale dependence in the species-richness–productivity relationship: the role of species turnover. Ecology 85, 2701–2708.
| Scale dependence in the species-richness–productivity relationship: the role of species turnover.Crossref | GoogleScholarGoogle Scholar |
Ciavatta, S., and Pastres, R. (2011). Exploring the long-term and interannual variability of biogeochemical variables in coastal areas by means of a data assimilation approach. Estuarine, Coastal and Shelf Science 91, 411–422.
| Exploring the long-term and interannual variability of biogeochemical variables in coastal areas by means of a data assimilation approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKrsr4%3D&md5=8fa67d18ada4e6056fc4086989740f47CAS |
Clarke, K. R., and Warwick, R. M. (2001). Species analysis. In ‘Change in Marine Communities: an approach to statistical analysis and interpretation’, 2nd edn. pp. 7-1–7-4. (PRIMER-E: Plymouth, UK.)
Clauzon, G., Suc, J.-P., Gautier, F., Berger, A., and Loutre, M.-F. (1996). Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24, 363–366.
| Alternate interpretation of the Messinian salinity crisis: controversy resolved?Crossref | GoogleScholarGoogle Scholar |
Colwell, R. K., Mao, C. X., and Chang, J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727.
| Interpolating, extrapolating, and comparing incidence-based species accumulation curves.Crossref | GoogleScholarGoogle Scholar |
Comín, F. A., Menéndez, M., and Herrera, J. A. (2004). Spatial and temporal scales for monitoring coastal aquatic ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems 14, S5–S17.
| Spatial and temporal scales for monitoring coastal aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |
Cooper, N., Bielby, J., Thomas, G. H., and Purvis, A. (2008). Macroecology and extinction risk correlates of frogs. Global Ecology and Biogeography 17, 211–221.
| Macroecology and extinction risk correlates of frogs.Crossref | GoogleScholarGoogle Scholar |
Cowie, R. H., and Holland, B. S. (2006). Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography 33, 193–198.
| Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands.Crossref | GoogleScholarGoogle Scholar |
Darwin, C. (1859). ‘On the Origins of Species by Means of Natural Selection.’ (Murray: London.)
Dauvin, J. C. (2007). Paradox of estuarine quality: benthic indicators and indices in estuarine environments, consensus or debate for the future. Marine Pollution Bulletin 55, 271–281.
| Paradox of estuarine quality: benthic indicators and indices in estuarine environments, consensus or debate for the future.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1equrvO&md5=7603d6dca5f06b1c55ef8ef90cc1a0deCAS | 17007892PubMed |
Davies, J. H. L. (1964). A morphogenic approach to world shorelines. Zeitschrift für Geomorphologie 8, 127–142.
de Kroon, H., de Jong, H., and de Verhoeven, J. T. A. (1985). The macrofauna distribution in brackish inland waters in relation to chlorinity and other factors. Hydrobiologia 127, 265–275.
| The macrofauna distribution in brackish inland waters in relation to chlorinity and other factors.Crossref | GoogleScholarGoogle Scholar |
De Meester, L., Gómez, A., Okamura, B., and Schwenk, K. (2002). The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23, 121–135.
| The monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms.Crossref | GoogleScholarGoogle Scholar |
Departament de Política Territorial i Obres Públiques (2005). Hipermapa. Atles electrònic de Catalunya. Available at http://hipermapa.ptop.gencat.cat/hipermapa/client/151208/base_high_cat.html [Verified 8 January 2015].
Diamond, J. M. (1975). The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation 7, 129–146.
| The island dilemma: lessons of modern biogeographic studies for the design of natural reserves.Crossref | GoogleScholarGoogle Scholar |
Dolédec, S., and Chessel, D. (1989). Seasonal successions and spatial variables in fresh-water environments 2. Distinction between seasonal and environmental-effects within floral and faunistical data. Acta Oecologica Oecologia Generalis 10, 207–232.
Dray, S., and Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22, 1–20.
| The ade4 package: implementing the duality diagram for ecologists.Crossref | GoogleScholarGoogle Scholar |
Elliott, M., and Quintino, V. (2007). The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin 54, 640–645.
| The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOqtbo%3D&md5=4258e0072921604e025e26b520edab8eCAS | 17418874PubMed |
Frisch, D., and Green, A. J. (2007). Copepods come in first: rapid colonization of new temporary ponds. Archiv für Hydrobiologie 168, 289–297.
| Copepods come in first: rapid colonization of new temporary ponds.Crossref | GoogleScholarGoogle Scholar |
Frisch, D., Rodriguez-Perez, H., and Green, A. J. (2006). Invasion of artificial ponds in Doñana Natural Park, southwest Spain, by an exotic estuarine copepod. Aquatic Conservation: Marine and Freshwater Ecosystems 16, 483–492.
| Invasion of artificial ponds in Doñana Natural Park, southwest Spain, by an exotic estuarine copepod.Crossref | GoogleScholarGoogle Scholar |
García-Berthou, E., Boix, D., and Clavero, M. (2007). Non-indigenous animal species naturalized in Iberian inland waters. In ‘Biological Invaders in Inland Waters: Profiles, Distribution, and Threats’. (Ed. F. Gherardi.) pp. 123–140. (Springer Science & Business Media.)
Gascón, S., Brucet, S., Sala, J., Boix, D., and Quintana, X. D. (2007). Comparison of the effects of hydrological disturbance events on benthos and plankton salt marsh communities. Estuarine, Coastal and Shelf Science 74, 419–428.
| Comparison of the effects of hydrological disturbance events on benthos and plankton salt marsh communities.Crossref | GoogleScholarGoogle Scholar |
Gillespie, R. G., and Roderick, G. K. (2002). Arthropods on islands: colonization, speciation, and conservation. Annual Review of Entomology 47, 595–632.
| Arthropods on islands: colonization, speciation, and conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWlsQ%3D%3D&md5=4381a75cc648e9f5a3be9da43a21bdbeCAS | 11729086PubMed |
Gillespie, R. G., Claridge, E. M., and Goodacre, S. L. (2008). Biogeography of the fauna of French Polynesia: diversification within and between a series of hot spot archipelagos. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 363, 3335–3346.
| Biogeography of the fauna of French Polynesia: diversification within and between a series of hot spot archipelagos.Crossref | GoogleScholarGoogle Scholar | 18782725PubMed |
Green, A. J., Jenkins, K. M., Bell, D., Morris, P. J., and Kingsford, R. T. (2008). The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshwater Biology 53, 380–392.
Guelorget, O., and Perthuisot, J. P. (1983). ‘Travaux du Laboratoire de Géologie 16.’ (Presse de l’Ecole Normale Supérieure: Paris.)
Harrison, S., Ross, S. J., and Lawton, J. H. (1992). Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology 61, 151–158.
| Beta-diversity on geographic gradients in Britain.Crossref | GoogleScholarGoogle Scholar |
Havel, J. E., and Shurin, J. B. (2004). Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnology and Oceanography 49, 1229–1238.
| Mechanisms, effects, and scales of dispersal in freshwater zooplankton.Crossref | GoogleScholarGoogle Scholar |
Hubbell, S. P. (2001). ‘The Unified Neutral Theory of Biodiversity and Biogeography.’ (Princeton University Press: Princeton, NJ, USA.)
Jaume, D. (1989). Metadiaptomus chevreuxi (Copepoda: Calanoida: Diaptomidae) and Leptestheria mayeti (Branchiopoda: Conchostraca: Leptestheriidae), two African freshwater crustaceans recorded in Majorca. Limnetica 5, 101–109.
Jensen, E., Brucet, S., Meerhoff, M., Nathansen, L., and Jeppesen, E. (2010). Community structure and diel migration of zooplankton in shallow brackish lakes: role of salinity and predators. Hydrobiologia 646, 215–229.
| Community structure and diel migration of zooplankton in shallow brackish lakes: role of salinity and predators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksF2rsrk%3D&md5=2482d857837957f16dffb2a50cf7da5cCAS |
Jeppesen, E., Søndergaard, M., Pedersen, A. R., Jürgens, K., Strzelczak, A., Lauridsen, T. L., and Johansson, L. S. (2007). Salinity induced regime shift in shallow brackish lagoons. Ecosystems 10, 48–58.
| Salinity induced regime shift in shallow brackish lagoons.Crossref | GoogleScholarGoogle Scholar |
Joyce, C. B., Vina-Herbon, C., and Metcalfe, D. J. (2005). Biotic variation in coastal water bodies in Sussex, England: implications for saline lagoons. Estuarine, Coastal and Shelf Science 65, 633–644.
| Biotic variation in coastal water bodies in Sussex, England: implications for saline lagoons.Crossref | GoogleScholarGoogle Scholar |
Kevrekidis, T., Mogias, A., and Gouvis, N. (2000). Interannual changes in the composition of the macrobenthic fauna of Drana lagoon (Evros Delta, N. Aegean Sea): preliminary note. Belgian Journal of Zoology 130, 101–107.
Kjerfve, B. (1994). ‘Coastal Lagoon Processes.’ (Elsevier Science Publishers: Amsterdam.)
Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S. (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature 400, 652–655.
| Chronology, causes and progression of the Messinian salinity crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVCltb4%3D&md5=b594931f9f81318a99f26f8535e59b5dCAS |
Lomolino, M. V., Brown, J. H., and Sax, D. F. (2010). Island biogeography theory reticulations and reintegration of ‘a biogeography of the species’. In ‘Island Biogeography Theory. The Theory of Island Biogeography Revisited’ (Eds J. B. Losos and R. E. Ricklefs.) pp. 13–51. (Princeton University Press: Princeton, NJ, USA.)
Louette, G., and De Meester, L. (2005). High dispersal capacity of cladoceran zooplankton in newly founded communities. Ecology 86, 353–359.
| High dispersal capacity of cladoceran zooplankton in newly founded communities.Crossref | GoogleScholarGoogle Scholar |
Lucena-Moya, P., Pardo, I., and Álvarez, M. (2009). Development of a typology for transitional waters in the Mediterranean ecoregion: the case of the islands. Estuarine, Coastal and Shelf Science 82, 61–72.
| Development of a typology for transitional waters in the Mediterranean ecoregion: the case of the islands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitlWnuro%3D&md5=c918d29bfbac1c891e122cfad44c0c72CAS |
MacArthur, R. H., and Wilson, E. O. (1967). ‘The Theory of Island Biogeography’, Vol. 1. (Princeton University Press: Princeton, NJ, USA.)
Magurran, A. E. (2013). ‘Measuring Biological Diversty.’ (John Wiley & Sons.)
Melendez-Hevia, I. (2004). ‘Geología de España: una historia de seiscientos millones de años.’ (Rueda.)
Ministerio de Agricultura Pesca y Alimentación (2006). Sistema de identificación de parcelas agrícolas. Available at http://sigpac.mapa.es/fega/visor/ [Verified 20 December 2014].
Nielsen, D. L., Brock, M. A., Petrie, R., and Crosslé, K. (2007). The impact of salinity pulses on the emergence of plant and zooplankton from wetland see and egg banks. Freshwater Biology 52, 784–795.
| The impact of salinity pulses on the emergence of plant and zooplankton from wetland see and egg banks.Crossref | GoogleScholarGoogle Scholar |
Novosolov, M., and Meiri, S. (2013). The effect of island type on lizard reproductive traits. Journal of Biogeography 40, 2385–2395.
| The effect of island type on lizard reproductive traits.Crossref | GoogleScholarGoogle Scholar |
Pérez-Ruzafa, A., Fernández, A. I., Marcos, C., Gilabert, J., Quispe, J. I., and García-Charton, J. A. (2005). Spatial and temporal variations of hydrological conditions, nutrients and chlorophyll-a in a Mediterranean coastal lagoon (Mar Menor, Spain). Hydrobiologia 550, 11–27.
| Spatial and temporal variations of hydrological conditions, nutrients and chlorophyll-a in a Mediterranean coastal lagoon (Mar Menor, Spain).Crossref | GoogleScholarGoogle Scholar |
Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I. M., and Pérez-Marcos, M. (2011). Coastal lagoons: ‘transitional ecosystems’ between transitional and coastal waters. Journal of Coastal Conservation 15, 369–392.
| Coastal lagoons: ‘transitional ecosystems’ between transitional and coastal waters.Crossref | GoogleScholarGoogle Scholar |
Pinheiro, J. C., and Bates, D. M. (2000). ‘Mixed-effects Models in S and S-PLUS. Statistics and Computing.’ (Springer. New York.)
Poff, N. L. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16, 391–409.
| Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology.Crossref | GoogleScholarGoogle Scholar |
Quintana, X. D., Moreno-Amich, R., and Comín, F. A. (1998). Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 1: differential confinement of nutrients. Journal of Plankton Research 20, 2089–2107.
| Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding. Part 1: differential confinement of nutrients.Crossref | GoogleScholarGoogle Scholar |
Rossi, V., Benassi, G., Veneri, M., Bellavere, C., Menozzi, P., Moroni, A., and Mckenzie, K. G. (2003). Ostracoda of the Italian ricefields thirty years on: new synthesis and hypothesis. Journal of Limnology 62, 1–8.
| Ostracoda of the Italian ricefields thirty years on: new synthesis and hypothesis.Crossref | GoogleScholarGoogle Scholar |
Sauer, J. D. (1969). Oceanic islands and biogeographical theory: a review. Geographical Review 59, 582–593.
| Oceanic islands and biogeographical theory: a review.Crossref | GoogleScholarGoogle Scholar |
Shurin, J. B. (2000). Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities. Ecology 81, 3074–3086.
| Dispersal limitation, invasion resistance, and the structure of pond zooplankton communities.Crossref | GoogleScholarGoogle Scholar |
Simon, C. (1987). Hawaiian evolutionary biology: an introduction. Trends in Ecology & Evolution 2, 175–178.
| Hawaiian evolutionary biology: an introduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7gvFGltQ%3D%3D&md5=a67522da7907ce7588554ad201d0396aCAS |
Statzner, B., Hildrew, A. G., and Resh, V. H. (2001). Species traits and environmental constraints: entomological research and the history of ecological theory. Annual Review of Entomology 46, 291–316.
| Species traits and environmental constraints: entomological research and the history of ecological theory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlSmtrg%3D&md5=5502d855b3a85404b65f8a88feaeffeaCAS | 11112171PubMed |
Strange, E. M., and Foin, T. C. (1999). Interaction of physical and biological processes in the assembly of stream fish communities. In ‘Ecological Assembly Rules: Perspectives, Advances, Retreats’. (Eds E. Weiher and P. Keddy.) pp. 311–338. (Cambridge University Press: Cambridge, UK.)
ter Braak, C. J. F., and Šmilauer, P. (1998). ‘CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4).’ (Microcomputer Power: Ithaca, NY.)
Vanschoenwinkel, B., Gielen, S., Seaman, M., and Brendonck, L. (2008). Any way the wind blows: frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117, 125–134.
| Any way the wind blows: frequent wind dispersal drives species sorting in ephemeral aquatic communities.Crossref | GoogleScholarGoogle Scholar |
Venables, W. N., and Ripley, B. D. (2002). ‘Statistics Complements to Modern Applied Statistics with S’, 4th edn. (Springer: New York.)
Wallace, A. R. (1902). ‘Island life’, 3rd edn. (MacMillan and Co.: London)
Walter, H. S. (2004). The mismeasure of islands: implications for biogeographical theory and the conservation of nature. Journal of Biogeography 31, 177–197.
| The mismeasure of islands: implications for biogeographical theory and the conservation of nature.Crossref | GoogleScholarGoogle Scholar |
Watson, M. D. (2009). Continental Islands. In ‘Encyclopedia of Islands’. (Eds R. G. Gillespie and D. A. Clague.) pp. 180–187. (University of California Press: Berkeley, CA.)
Whittaker, R. J., and Fernández-Palacios, J. M. (2007). ‘Island Biogeography: Ecology, Evolution, and Conservation’, 2nd edn. (Oxford University Press: Oxford.)
Whittaker, R. J., Triantis, K. A., and Ladle, R. J. (2008). A general dynamic theory of oceanic island biogeography. Journal of Biogeography 35, 977–994.
| A general dynamic theory of oceanic island biogeography.Crossref | GoogleScholarGoogle Scholar |
Zamora, L., Mezquita, F., and Pretus, J. L. (2005). The non-marine ostracod fauna of the Balearic Islands. Berliner paläobiologische Abhandlungen 6, 133.