Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effects of area and available energy on fish assemblages of tropical streams

Bruno Bastos Gonçalves A , Francisco Leonardo Tejerina-Garro B C and Rodrigo Assis de Carvalho D E
+ Author Affiliations
- Author Affiliations

A Programa de pós-graduação em Aquicultura, Jaboticabal, Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP), Distrito de Rubião Junior, s/n, 18618970, Botucatu, SP, Brazil.

B Centro de Biologia Aquática, Departamento de Ciências Biológicas, PUC Goiás, Campus II, Avenida Engler s/n, 74885460, Goiânia, GO, Brazil.

C Programa de Pós-graduação em Sociedade, Tecnologia e Meio Ambiente, UniEVANGÉLICA, Avenida Universitária quilômetro 3.5, Cidade Universitária, 75083515, Anápolis, GO, Brazil.

D Universidade Estadual de Goiás (UEG), Programa de Pós-Graduação em Recursos Naturais do Cerrado (RENAC), Câmpus de Ciências Exatas e Tecnológicas,Henrique Santillo, BR 153, number 3105 Fazenda Barreiro do Meio, 75132400, Anápolis, GO, Brazil.

E Corresponding author. Email: decarvalho.ra@gmail.com

Marine and Freshwater Research 68(4) 772-779 https://doi.org/10.1071/MF15431
Submitted: 13 November 2015  Accepted: 16 May 2016   Published: 14 July 2016

Abstract

A central issue in fish community ecology is to understand how the size of the drainage area and the available energy influence fish species diversity and their spatial distribution. In the present study, we tested whether the species–area relationship (represented by drainage area) and species–energy association (represented by algal biomass and organic matter) drive taxonomic and functional richness in a regional scale. The results indicated that fish assemblages of the two tropical neighbouring basins sampled responded differently to the size of drainage area. Whereas taxonomic richness was influenced by the size of the drainage area in Tocantins River basin streams, it was not affected in Araguaia River basin streams. Both taxonomic richness and functional richness of the fish assemblages were affected by available energy in the system. A possible explanation for these different responses is related to local conditions, such as the percentage of natural vegetation cover encountered in each basin.

Additional keywords: algal biomass, land use, organic matter, vegetation cover.


References

Agostinho, A. A., and Zalewski, M. (1995). The dependence of fish community structure and dynamics on floodplain and riparian ecotone zone in Parana River, Brazil. Hydrobiologia 303, 141–148.
The dependence of fish community structure and dynamics on floodplain and riparian ecotone zone in Parana River, Brazil.Crossref | GoogleScholarGoogle Scholar |

Albert, J. E., and Reis, R. E. (2011). Introduction to neotropical freshwaters. In ‘Historical Biogeography of Neotropical Freshwater Fishes’. (Eds J. E. Albert and R. E. Reis.) pp. 3–19. (University of California Press: Berkeley, CA.)

Albrecht, M. P., and Pellegrini-Caramaschi, E. (2003). Feeding ecology of Leporinus taeniofasciatus (Characiformes: Anostomidae) before and after the installations of a hydroelectric plant in the upper Rio Tocantins, Brazil. Neotropical Ichthyology 1, 53–60.
Feeding ecology of Leporinus taeniofasciatus (Characiformes: Anostomidae) before and after the installations of a hydroelectric plant in the upper Rio Tocantins, Brazil.Crossref | GoogleScholarGoogle Scholar |

Arrhenius, O. (1921). Species and area. Journal of Ecology 9, 95–99.
Species and area.Crossref | GoogleScholarGoogle Scholar |

Barroso, G. F., and Littlepage, J. (1998). ‘Protocolo para Análise de Clorofila a e Feopigmentaçãopelo Método Fluorimétrico (Fluorimetro TD-700). Programa de Monitoramento Ambiental.’ (UFES: Vitória, Brazil.)

Bistoni, M. A., and Hued, A. C. (2002). Patterns of fish species richness in rivers of the central region of Argentina. Brazilian Journal of Biology 62, 753–764.
Patterns of fish species richness in rivers of the central region of Argentina.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7ksVakug%3D%3D&md5=5964a5e4900f75ff5d554bd01c5cfd63CAS |

Carvalho, R. A., and Tejerina-Garro, F. L. (2015). Environmental and spatial processes: what controls the functional structure of fish assemblages in tropical rivers and headwater streams? Ecology Freshwater Fish 24, 317–328.
Environmental and spatial processes: what controls the functional structure of fish assemblages in tropical rivers and headwater streams?Crossref | GoogleScholarGoogle Scholar |

Chittaro, P. M. (2002). Species–area relationships for coral reef fish assemblages of St Croix, US Virgin Islands. Marine Ecology (Berlin) 233, 253–261.
Species–area relationships for coral reef fish assemblages of St Croix, US Virgin Islands.Crossref | GoogleScholarGoogle Scholar |

Costa, M. H., Botta, A., and Cardille, J. A. (2003). Effects of large scale changes in land cover on the discharge of the Tocantins River, south-eastern Amazonia. Journal of Hydrology 283, 206–217.
Effects of large scale changes in land cover on the discharge of the Tocantins River, south-eastern Amazonia.Crossref | GoogleScholarGoogle Scholar |

de Oliveira, I. J. (2014). Chapadões descerrados: relações entre vegetação, relevo e uso das terras em Goiás. Boletim Goiano de Geografia 34, 311–336.

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. -I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A. -H., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
Freshwater biodiversity: importance, threats, status and conservation challenges.Crossref | GoogleScholarGoogle Scholar | 16336747PubMed |

Eadie, J. McA., Hurly, T. A., Montgomerie, R. D., and Teather, K. L. (1986). Lakes and rivers as islands: species–area relationships in the fish faunas of Ontario. Environmental Biology of Fishes 15, 81–89.
Lakes and rivers as islands: species–area relationships in the fish faunas of Ontario.Crossref | GoogleScholarGoogle Scholar |

Fialho, A. P., Oliveira, L. G., Tejerina-Garro, F. L., and Gomes, L. C. (2007). Fish assemblage structure in tributaries of the Meia Ponte River, Goiás, Brazil. Neotropical Ichthyology 5, 53–60.
Fish assemblage structure in tributaries of the Meia Ponte River, Goiás, Brazil.Crossref | GoogleScholarGoogle Scholar |

Galinkin, M. (2003). ‘GeoGoiás2002.’ (Agência Ambiental de Goiás, Fundação CEBRAC, PNUMA, SEMARH: Goiânia, Brazil.)

Giller, P. S., and Malmqvist, B. (2000). ‘The Biology of Streams and Rivers.’ (Oxford University Press: New York.)

Guégan, J. F., Lek, S., and Oberdoff, T. (1998). Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391, 382–384.
Energy availability and habitat heterogeneity predict global riverine fish diversity.Crossref | GoogleScholarGoogle Scholar |

Hoeinghaus, D. J., Winemiller, K. O., and Taphorn, D. C. (2004). Compositional change in fish assemblages along the Andean piedmont–Llanos floodplaing gradient of the Portuguesa River, Venezuela. Neotropical Ichthyology 2, 85–92.
Compositional change in fish assemblages along the Andean piedmont–Llanos floodplaing gradient of the Portuguesa River, Venezuela.Crossref | GoogleScholarGoogle Scholar |

Jepsen, D. B., and Winemiller, K. O. (2007). Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers. Ecology Freshwater Fish 16, 267–281.
Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers.Crossref | GoogleScholarGoogle Scholar |

Junk, W. J. (1997). ‘The Central Amazon Floodplain: Ecology of a Pulsing System.’ (Springer: Berlin.)

Junk, W. J., Bayley, P. B., and Sparks, R. E. (1989). The flood pulse concept in river–floodplain systems. In ‘Proceedings of the International Large River Symposium (LARS)’, 14–21 September 1986, Honey Harbour, ON, Canada. (Ed. D. P. Dodge.) Canadian Special Publication of Fisheries and Aquatic Sciences 106, pp. 110–127. (Canadian Government Publishing Centre: Ottawa, ON, Canada.) Available at http://www.dfo-mpo.gc.ca/Library/111846.pdf [Verified 7 June 2016].

Klink, C. A., and Machado, R. B. (2005). Conservation of the Brazilian cerrado. Conservation Biology 19, 707–713.
Conservation of the Brazilian cerrado.Crossref | GoogleScholarGoogle Scholar |

Lévêque, C., Oberdorff, T., Paugy, D., Stiassny, M. L. J., and Tedesco, P. A. (2008). Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595, 545–567.
Global diversity of fish (Pisces) in freshwater.Crossref | GoogleScholarGoogle Scholar |

Losos, J. B., and Schluter, D. (2000). Analysis of an evolutionary species–area relationship. Nature 408, 847–850.
Analysis of an evolutionary species–area relationship.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlaisw%3D%3D&md5=451883621e93d33d5b2c54a7d9b26415CAS | 11130721PubMed |

Lowe-McConnell, R. H. (1999) ‘Estudos Ecológicosde Comunidadesde Peixes.’ (Edusp: São Paulo, Brazil.)

MacArthur, R. H., and Wilson, E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: Princeton, NJ, USA.)

Matthews, W. J., and Robison, H. W. (1998). Influence of drainage connectivity, drainage area and regional species richness on fishes of the interior highlands in Arkansas. American Midland Naturalist 139, 1–19.
Influence of drainage connectivity, drainage area and regional species richness on fishes of the interior highlands in Arkansas.Crossref | GoogleScholarGoogle Scholar |

Melo, C. E., Lima, J. D., Pinto-Silva, V., and Melo, T. L. (2005). ‘Peixes do Rio das Mortes: Identificação e Ecologia das Espécies Mais Comuns.’ (Editora UNEMAT: Cáceres, Brazil.)

Mittermeier, R. A., Gil, P. R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J., Fonseca, G. A. B., Seligmann, P. A., and Ford, H. (2004). ‘Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Ecoregions.’ (CEMEX: Mexico City)

Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., and Gascon, C. (2011) Global biodiversity conservation: the critical role of hotspots. In ‘Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas’. (Eds F. E. Zachos and J. C. Habel.) pp. 3–22. (Springer: Berlin.)

Pavanelli, C. S., and Britski, H. A. (1999). Description of a new species of Steindachnerina (Teleostei: Characiformes: Curimatidae) from the upper Rio Paraná basin, Brazil. Ichthyological Exploration of Freshwaters 10, 211–216.

Planquette, P., Keith, P., and Le Bail, P. -Y. (1996). ‘Atlas des Poissons d’Eau Douce de Guyane.’ (Collection du Patrimoine Naturel: Paris.)

PMDBBS (2016). Projeto de Monitoramento do Desmatamento dos Biomas Brasileiros por Satélite. Available at http://www.mma.gov.br/images/arquivo/80120/PPCerrado/Relatorio%20Tecnico_Bioma%20Cerrado_2011vfinal.pdf [Verified 23 March 2016].

Quesada, C. A., Miranda, A. C., Hodnett, M. G., Santos, A. J. B., Miranda, H. S., and Breyer, L. M. (2004). Seasonal and depth variation of soil moisture in a burned open savanna (campo sujo) in central Brazil. Ecological Applications 14, 33–41.
Seasonal and depth variation of soil moisture in a burned open savanna (campo sujo) in central Brazil.Crossref | GoogleScholarGoogle Scholar |

Reis, R. E., Kullander, S. O., and Ferrari, C. J. Jr (2003). ‘Check List of the Freshwater Fishes of South and Central America.’ (EDPUCRS: Porto Alegre, Brazil.)

Ribeiro, M. C. L. B., Petrere, M., and Juras, A. A. (1995). Ecological integrity and fisheries ecology of the Araguaia–Tocantins River Basin, Brazil. Regulated Rivers: Research and Management 11, 325–350.
Ecological integrity and fisheries ecology of the Araguaia–Tocantins River Basin, Brazil.Crossref | GoogleScholarGoogle Scholar |

Ríos-Villamizar, E. A., Piedade, M. T. F., Da Costa, J. G., Adeney, J. M., and Junk, W. J. (2014). Chemistry of different Amazonian water types for river classification: a preliminary review. War & Society III 78, 17–28.

Santana, A. O., Tejerina-Garro, F. L., and Carvalho, R. A. (2014). Variação da diversidade α e β das assembleias de peixes num gradiente montante-jusante em um rio tropical, Brasil central. Fronteiras Sociedade Tecnologia e Meio Ambiente 3, 106–118.
Variação da diversidade α e β das assembleias de peixes num gradiente montante-jusante em um rio tropical, Brasil central.Crossref | GoogleScholarGoogle Scholar |

Santos, G. M., Mérona, B., Juras, A. A., and Jégu, M. (2004). ‘Peixes do Baixo Rio Tocantins: 20 Anos Depois da Usina Hidrelétrica Tucuruí.’ (Eletronorte: Brasília, Brazil.)

Silva, A. C., Torrado, P. V., and Abreu, J. S. (1999). Métodos de quantificação da matéria orgânica do solo. Revista Universidade de Alfenas 5, 21–26.

Strahler, A. N. (1957). Quantitative analyses of watershed geomorphology. Transactions - American Geophysical Union 38, 913–920.
Quantitative analyses of watershed geomorphology.Crossref | GoogleScholarGoogle Scholar |

Strayer, D. L., and Dudgeon, D. (2010). Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29, 344–358.
Freshwater biodiversity conservation: recent progress and future challenges.Crossref | GoogleScholarGoogle Scholar |

Súarez, Y. R., Souza, M. M., Ferreira, F. S., Pereira, M. J., Silva, E. A., Ximenes, L. Q. L., Azevedo, L. G., Martins, O. C., and Lima-Júnior, S. E. (2011). Patterns of species richness and composition of fish assemblages in streams of the Ivinhema River basin, Upper Paraná River. Acta Limnologica Brasiliensia 23, 177–188.
Patterns of species richness and composition of fish assemblages in streams of the Ivinhema River basin, Upper Paraná River.Crossref | GoogleScholarGoogle Scholar |

Tanaka, W., Wattanasiriserekul, R., Tomiyama, Y., Yamasita, T., Phinrub, W., Chamnivikaipong, T., Suvarnaraksha, A., and Shimatani, Y. (2015). Influence of floodplain area on fish species richness in waterbodies of the Chao Phraya River Basin, Thailand. Open Journal of Ecology 5, 434–451.
Influence of floodplain area on fish species richness in waterbodies of the Chao Phraya River Basin, Thailand.Crossref | GoogleScholarGoogle Scholar |

Tejerina-Garro, F. L. (2008) ‘Biodiversidade e Impactos Ambientais no Estado de Goiás.’ (Editora da UCG: Goiânia, Brazil.)

Teresa, F. B., Casatti, L., and Cianciaruso, M. V. (2015). Functional differentiation between fish assemblages from forested and deforested streams. Neotropical Ichthyology 13, 361–370.
Functional differentiation between fish assemblages from forested and deforested streams.Crossref | GoogleScholarGoogle Scholar |

Vannote, R. R., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
The river continuum concept.Crossref | GoogleScholarGoogle Scholar |

Vörösmarty, C. J., Mcintyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C., Liermann, C. R., and Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature 467, 555–561.
Global threats to human water security and river biodiversity.Crossref | GoogleScholarGoogle Scholar | 20882010PubMed |

Watters, G. T. (1992). Unionids, fishes and the species–area curve. Journal of Biogeography 19, 481–490.
Unionids, fishes and the species–area curve.Crossref | GoogleScholarGoogle Scholar |

Wetzel, R. G., and Likens, G. E. (1991). ‘Limnological Analyses.’ (Springer Verlag: New York.)

Whittaker, R. J., Willis, K. J., and Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28, 453–470.
Scale and species richness: towards a general, hierarchical theory of species diversity.Crossref | GoogleScholarGoogle Scholar |

Williamson, M. (1988). Relationships of species number to area, distance and other variables. In ‘Analytical Biogeography. An Integrated Approach to the Study of Animal and Plant Distributions’. (Eds A. A. Meyers and P. S. Giller.) pp. 91–115. (Chapman and Hall: London.)

Wright, D. H. (1983). Species–energy theory: an extension of species–area theory. Oikos 41, 496–506.
Species–energy theory: an extension of species–area theory.Crossref | GoogleScholarGoogle Scholar |