Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Contrasting population structures of three Pristis sawfishes with different patterns of habitat use

N. M. Phillips A D , J. A. Chaplin A , S. C. Peverell B and D. L. Morgan C
+ Author Affiliations
- Author Affiliations

A Centre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

B Queensland Department of Primary Industries and Fisheries, Sustainable Fisheries, Northern Fisheries Centre, Cairns, Qld 4870, Australia.

C Freshwater Fish Group and Fish Health Unit, Centre for Fish and Fisheries Research, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

D Corresponding author. Present address: Department of Biological Sciences, University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS 39406, USA. Email: n.phillips@usm.edu

Marine and Freshwater Research 68(3) 452-460 https://doi.org/10.1071/MF15427
Submitted: 12 November 2015  Accepted: 9 February 2016   Published: 16 May 2016

Abstract

This research demonstrates how population structure differs in elasmobranchs with different patterns of habitat use. Population structure was assessed using data at microsatellite loci in three species of Pristis sawfishes in northern Australian waters. Statistically significant population structure was found in each of P. clavata (FST = 0.021, FST = 0.151, P < 0.001) and P. zijsron (FST = 0.026, FST = 0.130, P < 0.001), which spend their entire life in marine waters. In contrast, there was no evidence of significant population structure in P. pristis, which uses freshwater rivers as juveniles and marine waters as adults (FST = 0.004, FST = 0.029, P = 0.210). When combined with the results of mtDNA analyses from a previous study, the results suggested that dispersal in P. pristis is male-biased, whereas both male and female gene flow are restricted at large spatial scales in each of P. clavata and P. zijsron in Australian waters. The present study has provided the first evidence of sex-biased dispersal in a sawfish.

Additional keywords: conservation genetics, elasmobranch, sex-biased dispersal.


References

Ballard, J. W. O., and Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology 13, 729–744.
The incomplete natural history of mitochondria.Crossref | GoogleScholarGoogle Scholar |

Blower, D. C., Pandolfi, J. M., Bruce, B. D., Gomez-Cabrera, M. C., and Ovenden, J. R. (2012). Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Marine Ecology Progress Series 455, 229–244.
Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sht77I&md5=5b4a516dbe3c52a465232e4c4b66d3b6CAS |

Bowen, B. W., Bass, A. L., Soares, L., and Toonen, R. J. (2005). Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta). Molecular Ecology 14, 2389–2402.
Conservation implications of complex population structure: lessons from the loggerhead turtle (Caretta caretta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qsLc%3D&md5=d8cf6729410caebc756dd701234d4864CAS | 15969722PubMed |

Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P., and Hueter, R. E. (2015). There and back again: a review of residency and return migrations in sharks, with implications for population structure and management. Annual Review of Marine Science 7, 547–570.
There and back again: a review of residency and return migrations in sharks, with implications for population structure and management.Crossref | GoogleScholarGoogle Scholar | 25251267PubMed |

Clark, A. (1978). Sex ratio and local resource competition in a prosimian primate. Science 201, 163–165.
Sex ratio and local resource competition in a prosimian primate.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvjs1ygug%3D%3D&md5=a6d3e374308644bfb0e2082b2d839666CAS | 17801832PubMed |

Cockburn, A., Scott, M. P., and Scotts, D. J. (1985). Inbreeding avoidance and male-biased natal dispersal in Antechinus spp. (Marsupialia: Dasyuridae). Animal Behaviour 33, 908–915.
Inbreeding avoidance and male-biased natal dispersal in Antechinus spp. (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar |

Crawford, N. G. (2010). SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources 10, 556–557.
SMOGD: software for the measurement of genetic diversity.Crossref | GoogleScholarGoogle Scholar | 21565057PubMed |

Crowder, L. B., Osherenko, G., Young, O. R., Airame, S., Norse, E. A., Baron, N., Day, J. C., Douvere, F., Ehler, C. N., Halpern, B. S., Langdon, S. J., McLeod, K. L., Ogden, J. C., Peach, R. E., Rosenberg, A. A., and Wilson, J. A. (2006). Resolving mismatches in U.S. ocean governance. Science 313, 617–618.
Resolving mismatches in U.S. ocean governance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVegtbc%3D&md5=d4d081204bf458ebdf183c4a93cd7265CAS | 16888124PubMed |

Daly-Engel, T. S., Seraphin, K. D., Holland, K. N., Coffey, J. P., Nance, H. A., Toonen, R. J., and Bowen, B. W. (2012). Global phylogeography with mixed-marker analysis reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini). PLoS One 7, e29986.
Global phylogeography with mixed-marker analysis reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12murY%3D&md5=ca8d3a1bf7f77684bf9db9b3861f469aCAS | 22253848PubMed |

Dobson, F. S. (1982). Competition for mates and predominant juvenile male dispersal in mammals. Animal Behaviour 30, 1183–1192.
Competition for mates and predominant juvenile male dispersal in mammals.Crossref | GoogleScholarGoogle Scholar |

Dudgeon, C. L., Broderick, D., and Ovenden, J. R. (2009). IUCN classification zones concord with, but underestimate, the population genetic structure of the zebra shark Stegostoma fasciatum in the Indo-West Pacific. Molecular Ecology 18, 248–261.
IUCN classification zones concord with, but underestimate, the population genetic structure of the zebra shark Stegostoma fasciatum in the Indo-West Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVGktb8%3D&md5=45e8fb82ec53daa8599d4a0b6884b79bCAS | 19192179PubMed |

Duncan, K. M., Martin, A. P., Bowen, B. W., and de Couet, H. G. (2006). Global phylogeography of the scalloped hammerhead Sphyrna lewini. Molecular Ecology 15, 2239–2251.
Global phylogeography of the scalloped hammerhead Sphyrna lewini.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1ait70%3D&md5=0cad9ca3ee0c885e95de6b1c4fb0dcdaCAS | 16780437PubMed |

Encalada, S. E., Lahanas, P. N., Bjorndal, K. A., and Bolten, A. B. (1996). Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Molecular Ecology 5, 473–483.
Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFaktr0%3D&md5=f5a8d373549f7815168e4008789d5c19CAS | 8794558PubMed |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=f1e687e3c48a9420af129f3b3675b00aCAS | 15969739PubMed |

Feldheim, K. A., Chapman, D. D., Simpfendorfer, C. A., Richards, V. P., Shivji, M. S., Wiley, T. R., Poulakis, G. R., Carlson, J. K., Eng, R., and Sagarese, S. (2010). Genetic tools to support the conservation of the endangered smalltooth sawfish, Pristis pectinata. Conservation Genetics Resources 2, 105–113.
Genetic tools to support the conservation of the endangered smalltooth sawfish, Pristis pectinata.Crossref | GoogleScholarGoogle Scholar |

Feldheim, K. A., Gruber, S. H., DiBattista, J. D., Babcock, E. A., Kessel, S. T., Hendry, A. P., Pikitch, E. K., Ashley, M. V., and Chapman, D. D. (2014). Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks. Molecular Ecology 23, 110–117.
Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks.Crossref | GoogleScholarGoogle Scholar | 24192204PubMed |

Feutry, P., Kyne, P. M., Pillans, R. D., Chen, X., Marthick, J. R., Morgan, D. L., and Grewe, P. M. (2015). Whole mitogenome sequencing refines population structure of the Critically Endangered sawfish Pristis pristis. Marine Ecology Progress Series 533, 237–244.
Whole mitogenome sequencing refines population structure of the Critically Endangered sawfish Pristis pristis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xlt12hurg%3D&md5=6ef6cfb2e61453781d1fa0353d097f59CAS |

Fields, A. T., Feldheim, K. A., Poulakis, G. R., and Chapman, D. D. (2015). Facultative parthenogenesis in a critically endangered wild vertebrate. Current Biology 25, R446–R447.
Facultative parthenogenesis in a critically endangered wild vertebrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsFektrY%3D&md5=fe2815005fa52e45fa1a7a5d6c2d114fCAS | 26035783PubMed |

François, O., and Durand, E. (2010). Spatially explicit Bayesian clustering models in population genetics. Molecular Ecology Resources 10, 773–784.
Spatially explicit Bayesian clustering models in population genetics.Crossref | GoogleScholarGoogle Scholar | 21565089PubMed |

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140–1162.
Mating systems, philopatry and dispersal in birds and mammals.Crossref | GoogleScholarGoogle Scholar |

Hamilton, W. D. (1967). Extraordinary sex ratios. Science 156, 477–488.
Extraordinary sex ratios.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2s7ivFOltg%3D%3D&md5=feb086035185a4b5e26b6ecbca6d2eaeCAS | 6021675PubMed |

Hey, J., and Nielsen, R. (2007). Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proceedings of the National Academy of Sciences of the United States of America 104, 2785–2790.
Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVSgtbc%3D&md5=89b427b8d1803846667a7f8a97dca6d7CAS | 17301231PubMed |

Hoarau, G., Boon, E., Jongma, D. N., Ferber, S., Palsson, J., Van der Veer, H. W., Rijnsdorp, A. D., Stam, W. T., and Olsen, J. L. (2005). Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proceedings of the Royal Society of Biological Sciences London – B. Biological Sciences 272, 497–503.

Hubisz, M. J., Falush, D., Stephens, M., and Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources 9, 1322–1332.
Inferring weak population structure with the assistance of sample group information.Crossref | GoogleScholarGoogle Scholar | 21564903PubMed |

IUCN (2013). 2013 IUCN Red List of Threatened Species. (International Union for Conservation of Nature and Natural Resources.) Available at http://www.iucnredlist.org [Verified 14 October 2013].

Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology 17, 4015–4026.
GST and its relatives do not measure differentiation.Crossref | GoogleScholarGoogle Scholar | 19238703PubMed |

Karl, S. A., Castro, A. L. F., Lopez, J. A., Charvet, P., and Burgess, G. H. (2011). Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA. Conservation Genetics 12, 371–382.
Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA.Crossref | GoogleScholarGoogle Scholar |

Karl, S. A., Castro, A. L. F., and Garla, R. C. (2012). Population genetics of the nurse shark (Ginglymostoma cirratum) in the western Atlantic. Marine Biology 159, 489–498.
Population genetics of the nurse shark (Ginglymostoma cirratum) in the western Atlantic.Crossref | GoogleScholarGoogle Scholar |

Keeney, D. B., Heupel, M. R., Hueter, R. E., and Heist, E. J. (2005). Microsatellite and mitochondrial DNA analyses of genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Molecular Ecology 14, 1911–1923.
Microsatellite and mitochondrial DNA analyses of genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslemsb8%3D&md5=af7262c3d63fac51cc2351e5004f736eCAS | 15910315PubMed |

Lawson Handley, L. J., and Perrin, N. (2007). Advances in our understanding of mammalian sex-biased dispersal. Molecular Ecology 16, 1559–1578.
Advances in our understanding of mammalian sex-biased dispersal.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3gtVyksA%3D%3D&md5=8ba304f0b7f3462a7e161ea21fae8fb4CAS | 17402974PubMed |

Le Port, A., and Lavery, S. (2012). Population structure and phylogeography of the short-tailed stingray, Dasyatis brevicaudata (Hutton 1875), in the southern hemisphere. The Journal of Heredity 103, 174–185.
Population structure and phylogeography of the short-tailed stingray, Dasyatis brevicaudata (Hutton 1875), in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 22174443PubMed |

Leonard, J. A. (2008). Ancient DNA applications for wildlife conservation. Molecular Ecology 17, 4186–4196.
Ancient DNA applications for wildlife conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyisrrI&md5=94b58ae8da7deafefc99fe19559b7e12CAS | 18684136PubMed |

Lewallen, E. A., Anderson, T. W., and Bohonak, A. J. (2007). Genetic structure of leopard shark (Triakis semifasciata) populations in California waters. Marine Biology 152, 599–609.
Genetic structure of leopard shark (Triakis semifasciata) populations in California waters.Crossref | GoogleScholarGoogle Scholar |

Meirmans, P. G. (2006). Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60, 2399–2402.
Using the AMOVA framework to estimate a standardized genetic differentiation measure.Crossref | GoogleScholarGoogle Scholar | 17236430PubMed |

Meirmans, P. G., and Hedrick, P. W. (2011). Assessing population structure: FST and related measures. Molecular Ecology Resources 11, 5–18.
Assessing population structure: FST and related measures.Crossref | GoogleScholarGoogle Scholar | 21429096PubMed |

Meirmans, P. G., and Van Tienderen, P. H. (2004). GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792–794.
GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms.Crossref | GoogleScholarGoogle Scholar |

Morgan, D. L., Whitty, J. M., Phillips, N. M., Thorburn, D. C., Chaplin, J. A., and McAuley, R. (2011). North-western Australia as a hotspot for endangered elasmobranchs, with particular reference to sawfishes and the northern river shark. Journal of the Royal Society of Western Australia 94, 345–358.

Morgan, D. L., Allen, M. G., Ebner, B. C., Whitty, J. M., and Beatty, S. J. (2015). Discovery of a pupping site and nursery for critically endangered green sawfish Pristis zijsron. Journal of Fish Biology 86, 1658–1663.
Discovery of a pupping site and nursery for critically endangered green sawfish Pristis zijsron.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MfhtFahtw%3D%3D&md5=afa70a8d2eba92298c6a00197829619bCAS | 25943152PubMed |

Mull, C. G., Lowe, C. G., and Young, K. A. (2008). Photoperiod and water temperature regulation of seasonal reproduction in male round stingrays (Urobatis halleri). Comparative Biochemistry and Physiology Part A 151, 717–725.
Photoperiod and water temperature regulation of seasonal reproduction in male round stingrays (Urobatis halleri).Crossref | GoogleScholarGoogle Scholar |

Musick, J. A., Burgess, G., Cailliet, G., Camhi, M., and Fordham, S. (2000). Management of sharks and their relatives (Elasmobranchii). Fisheries 25, 9–13.
Management of sharks and their relatives (Elasmobranchii).Crossref | GoogleScholarGoogle Scholar |

Ovenden, J. R., Kashiwagi, T., Broderick, D., Giles, J., and Salini, J. (2009). The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evolutionary Biology 9, 40–54.
The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago.Crossref | GoogleScholarGoogle Scholar | 19216767PubMed |

Palumbi, S. (1996). What can molecular genetics contribute to marine biogeography? An urchin’s tale. Journal of Experimental Marine Biology and Ecology 203, 75–92.
What can molecular genetics contribute to marine biogeography? An urchin’s tale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFOgsbk%3D&md5=bb21fafde8326b7791b0a0268d97d081CAS |

Pardini, A. T., Jones, C. S., Noble, L. R., Kreiser, B., Malcom, H., Bruce, B. D., Stevens, J. D., Cliff, G., Scholl, M. C., and Francis, M. Duffey, C. A. J., and Martin, A. P. (2001). Sex-biased dispersal in great white sharks. Nature 412, 139–140.

Perrin, N., and Lehmann, L. (2001). Is sociality driven by the costs of dispersal or the benefits of philopatry? A role for kin-discrimination mechanisms. American Naturalist 158, 471–483.
Is sociality driven by the costs of dispersal or the benefits of philopatry? A role for kin-discrimination mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1critlygtg%3D%3D&md5=5e51510990fb4bd42376dd9a70f7b39eCAS | 18707302PubMed |

Perrin, N., and Mazalov, V. (2000). Local competition, inbreeding and the evolution of sex-biased dispersal. American Naturalist 155, 116–127.
Local competition, inbreeding and the evolution of sex-biased dispersal.Crossref | GoogleScholarGoogle Scholar | 10657181PubMed |

Peverell, S. C. (2005). Distribution of sawfishes (Pristidae) in the Queensland Gulf of Carpentaria, Australia, with notes on sawfish ecology. Environmental Biology of Fishes 73, 391–402.
Distribution of sawfishes (Pristidae) in the Queensland Gulf of Carpentaria, Australia, with notes on sawfish ecology.Crossref | GoogleScholarGoogle Scholar |

Phillips, N., Chaplin, J., Morgan, D., and Peverell, S. (2009). Extraction and amplification of DNA from the dried rostra of sawfishes (Pristidae) for applications in conservation genetics. Pacific Conservation Biology 15, 128–134.

Phillips, N. M., Chaplin, J. A., Morgan, D. L., and Peverell, S. C. (2011). Population genetic structure and genetic diversity of three critically endangered Pristis sawfishes in Australian Waters. Marine Biology 158, 903–915.
Population genetic structure and genetic diversity of three critically endangered Pristis sawfishes in Australian Waters.Crossref | GoogleScholarGoogle Scholar |

Portnoy, D. S., and Heist, E. J. (2012). Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs. Journal of Fish Biology 80, 1120–1140.
Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rksVOktQ%3D%3D&md5=083a60017f7d1aa2b773e7fbf09eabc0CAS | 22497375PubMed |

Portnoy, D. S., McDowell, J. R., Heist, E. J., Musick, J. A., and Graves, J. E. (2010). World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus. Molecular Ecology 19, 1994–2010.
World phylogeography and male-mediated gene flow in the sandbar shark, Carcharhinus plumbeus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsl2jsb4%3D&md5=f2f441f275ec338891c2191f945e1129CAS | 20406387PubMed |

Pratt, H. L., and Carrier, J. C. (2001). A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum. Environmental Biology of Fishes 60, 157–188.
A review of elasmobranch reproductive behavior with a case study on the nurse shark, Ginglymostoma cirratum.Crossref | GoogleScholarGoogle Scholar |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=66ce2554c41294b6e14ab9910238e6bcCAS | 10835412PubMed |

Pusey, A. E. (1987). Sex-biased dispersal and inbreeding avoidance in birds and mammals. Trends in Ecology & Evolution 2, 295–299.
Sex-biased dispersal and inbreeding avoidance in birds and mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7gvFGqsw%3D%3D&md5=3fe36252a0c107a5cf78907768cf4c30CAS |

Raymond, M., and Rousset, F. (1995). An exact test for population differentiation. Evolution 49, 1280–1283.
An exact test for population differentiation.Crossref | GoogleScholarGoogle Scholar |

Rice, W. R. (1989). Analyzing tables of statistical significance. Evolution 43, 223–225.
Analyzing tables of statistical significance.Crossref | GoogleScholarGoogle Scholar |

Schrey, A. W., and Heist, E. J. (2003). Microsatellite analysis of population structure in the shortfin mako (Isurus oxyrinchus). Canadian Journal of Fisheries and Aquatic Sciences 60, 670–675.
Microsatellite analysis of population structure in the shortfin mako (Isurus oxyrinchus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Gitr4%3D&md5=ccc22f580f2252ac5de599f2e1de5ba7CAS |

Sheridan, C. M., Spotila, J. R., Bien, W. F., and Avery, H. W. (2010). Sex-biased dispersal and natal philopatry in the diamondback terrapin, Malaclemys terrapin. Molecular Ecology 19, 5497–5510.
Sex-biased dispersal and natal philopatry in the diamondback terrapin, Malaclemys terrapin.Crossref | GoogleScholarGoogle Scholar | 21091556PubMed |

Thorburn, D. C., Morgan, D. L., Rowland, A. J., and Gill, H. S. (2007). Freshwater Sawfish Pristis pristis Latham, 1794 (Chondrichthyes: Pristidae) in the Kimberley region of Western Australia. Zootaxa 1471, 27–41.

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER: software for identification and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
MICRO-CHECKER: software for identification and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=ef2000248f2bb58bef70f9977c655eadCAS |

Voris, K. (2000). Maps of Pleistocene sea levels in southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27, 1153–1167.
Maps of Pleistocene sea levels in southeast Asia: shorelines, river systems and time durations.Crossref | GoogleScholarGoogle Scholar |

Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Estimating F-statistics for the analysis of population structure.Crossref | GoogleScholarGoogle Scholar |

Whitty, J. M., Morgan, D. L., Peverell, S. C., and Thorburn, D. C. (2009). Ontogenetic depth partitioning by juvenile freshwater sawfish (Pristis pristis: Pristidae) in a riverine environment. Marine and Freshwater Research 60, 306–316.
Ontogenetic depth partitioning by juvenile freshwater sawfish (Pristis pristis: Pristidae) in a riverine environment.Crossref | GoogleScholarGoogle Scholar |