Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Lotic bacterioplankton and phytoplankton community changes under dissolved organic-carbon amendment: evidence for competition for nutrients

R. L. Carney A D , J. R. Seymour A , D. Westhorpe B and S. M. Mitrovic B C
+ Author Affiliations
- Author Affiliations

A Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.

B Department of Primary Industries, Water, PO Box 3720, Sydney, NSW 2024, Australia.

C Applied Ecology Team, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.

D Corresponding author. Email: richard.carney@uts.edu.au

Marine and Freshwater Research 67(9) 1362-1373 https://doi.org/10.1071/MF15372
Submitted: 30 September 2015  Accepted: 17 February 2016   Published: 24 May 2016

Abstract

During periods of low river discharge, bacterial growth is typically limited by dissolved organic carbon (DOC) and is tightly regulated by phytoplankton production. However, import of allochthonous DOC into rivers by freshwater inflows may diminish bacterial reliance on phytoplankton-produced carbon, leading to competition for nitrogen (N) and phosphorus (P). To investigate phytoplankton–bacterial competition in response to allochthonous inputs, we conducted a mesocosm experiment, comparing microbial responses to the following two manipulation treatments: (1) addition of N and P, and (2) addition of a DOC and N and P. Measurement of chlorophyll-a estimated phytoplankton biomass and microscopic counts were performed to discriminate community change. Bacterial abundance was tracked using flow cytometry and community assemblages were characterised using automated ribosomal intergenic spacer analyses and 16S rRNA-amplicon sequencing. We found that bacterial abundance increased in the leachate addition, whereas chlorophyll-a was reduced and the bacterial community shifted to one dominated by heterotrophic genera, and autotrophic microbes including Synechococcus and Cyclotella increased significantly in the nutrient treatment. These observations indicated that DOC and nutrient inputs can lead to shifts in the competitive dynamics between bacteria and phytoplankton, reducing phytoplankton biomass, which may potentially shift the major pathway of carbon to higher trophic organisms, from the phytoplankton grazer chain to the microbial food web.


References

Almeida, M., Cunha, M., and Alcântara, F. (2005). Relationship of bacterioplankton production with primary production and respiration in a shallow estuarine system (Ria de Aveiro, NW Portugal). Microbiological Research 160, 315–328.
Relationship of bacterioplankton production with primary production and respiration in a shallow estuarine system (Ria de Aveiro, NW Portugal).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MznslOhtQ%3D%3D&md5=278a1a0b8629b25a4f68d312f8b93e95CAS | 16035244PubMed |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=7b370601ae69b72b6c1f2992335d019eCAS | 2231712PubMed |

Blum, L. K., and Mills, A. L. (2012). Chapter 9: Estuarine Microbial Ecology. In ‘Estuarine Ecology’, 2nd edn. (Eds J. W. Day Jr, W. M. Kemp, A. Yáñez-Arancibia, and B. C. Crump.) pp. 235–261. (Wiley-Blackwell: Hoboken, NJ, USA.)

Brown, M. V., Schwalbach, M. S., Hewson, I., and Fuhrman, J. A. (2005). Coupling 16S–ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environmental Microbiology 7, 1466–1479.
Coupling 16S–ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGnurvP&md5=5d263afd77b8c65dcfe05db3a4bfc540CAS | 16104869PubMed |

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., and Gordon, J. I. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336.
QIIME allows analysis of high-throughput community sequencing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFalurg%3D&md5=70359596b4284c2a688a79bdb1c415fdCAS | 20383131PubMed |

Carney, R., Mitrovic, S., Jeffries, T., Westhorpe, D., Curlevski, N., and Seymour, J. (2015). River bacterioplankton community responses to a high inflow event. Aquatic Microbial Ecology 75, 187–205.
River bacterioplankton community responses to a high inflow event.Crossref | GoogleScholarGoogle Scholar |

Clesceri, L. S., Greenberg, A. E., and Eaton, A. D. (Eds) (1999). ‘Standard Methods for the Examination of Water and Wastewater’, 20th edn. (American Public Health Association, American Water Works Association and Water Environment Federation.)

Cloern, J. E. (1987). Turbidity as a control on phytoplankton biomass and productivity in estuaries. Continental Shelf Research 7, 1367–1381.
Turbidity as a control on phytoplankton biomass and productivity in estuaries.Crossref | GoogleScholarGoogle Scholar |

Cloern, J. E., Foster, S., and Kleckner, A. (2014). Phytoplankton primary production in the world’s estuarine–coastal ecosystems. Biogeosciences 11, 2477–2501.
Phytoplankton primary production in the world’s estuarine–coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Cole, J. J., Carpenter, S. R., Kitchell, J. F., and Pace, M. L. (2002). Pathways of organic carbon utilization in small lakes: results from a whole-lake 13C addition and coupled model. Limnology and Oceanography 47, 1664–1675.
Pathways of organic carbon utilization in small lakes: results from a whole-lake 13C addition and coupled model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1KqtL8%3D&md5=4d8f00ee8b33994a883f4392a98752fdCAS |

Currie, D. J., and Kalff, J. (1984). A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnology and Oceanography 29, 298–310.
A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXktVeltbg%3D&md5=545a6986fe9b6a40aa0ea98b08f64243CAS |

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72, 5069–5072.
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVaqtLg%3D&md5=0612a8d6e2c3680715f991eff206b3bfCAS | 16820507PubMed |

Drakare, S. (2002). Competition between picoplanktonic cyanobacteria and heterotrophic bacteria along crossed gradients of glucose and phosphate. Microbial Ecology 44, 327–335.
Competition between picoplanktonic cyanobacteria and heterotrophic bacteria along crossed gradients of glucose and phosphate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2iurw%3D&md5=bb5932c4d0066309e8a22865c88796deCAS | 12399896PubMed |

Eaton, A., Clesceri, L., Greenberg, A., and Franson, M. (1995). ‘Standard Methods for the Examination of Water and Wastewater.’ (American Public Health Association: Baltimore, MD, USA.)

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.
UCHIME improves sensitivity and speed of chimera detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSiurvL&md5=2588fa1a0689d1c108d0df4282cfd9e4CAS | 21700674PubMed |

Findlay, D., Kasian, S., Stainton, M., Beaty, K., and Lyng, M. (2001). Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area. Limnology and Oceanography 46, 1784–1793.
Climatic influences on algal populations of boreal forest lakes in the Experimental Lakes Area.Crossref | GoogleScholarGoogle Scholar |

Fouilland, E., Tolosa, I., Bonnet, D., Bouvier, C., Bouvier, T., Bouvy, M., Got, P., Le Floc’h, E., Mostajir, B., and Roques, C. (2014). Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters. FEMS Microbiology Ecology 87, 757–769.
Bacterial carbon dependence on freshly produced phytoplankton exudates under different nutrient availability and grazing pressure conditions in coastal marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsFGgtr0%3D&md5=7a9785926939a1ac09984ef61ae24e2cCAS | 24741704PubMed |

Gasol, J. M., and Del Giorgio, P. A. (2000). Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina 64, 197–224.

Gharib, S., and Abdel-Halim, A. M. (2006). Spatial variation of phytoplankton and some physico-chemical variables during the highest flood season in Lake Nasser (Egypt). Egyptian Journal of Aquatic Research 32, 246–263.

Haas, B. J., Gevers, D., Earl, A. M., Feldgarden, M., Ward, D. V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S. K., and Sodergren, E. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research 21, 494–504.
Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt1aisbc%3D&md5=d7a43259dd6604f6b27be22cc4e40244CAS | 21212162PubMed |

Hecky, R., and Kilham, P. (1988). Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnology and Oceanography 33, 796–822.
Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslGkur8%3D&md5=b231dce2d83d4c11551e4b1a001f7b5eCAS |

Hewson, I., and Fuhrman, J. A. (2004). Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Applied and Environmental Microbiology 70, 3425–3433.
Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFCit7k%3D&md5=ac6aac2e5e07b9a6f2a6c26fc68147a2CAS | 15184140PubMed |

Hitchcock, J. N., and Mitrovic, S. M. (2013). Different resource limitation by carbon, nitrogen and phosphorus between base flow and high flow conditions for estuarine bacteria and phytoplankton. Estuarine, Coastal and Shelf Science 135, 106–115.
Different resource limitation by carbon, nitrogen and phosphorus between base flow and high flow conditions for estuarine bacteria and phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlOksb8%3D&md5=a559351ada67d624ff72f96f6144c55fCAS |

Hitchcock, J. N., and Mitrovic, S. M. (2015a). After the flood: changing dissolved organic carbon bioavailability and bacterial growth following inflows to estuaries. Biogeochemistry 124, 219–233.
After the flood: changing dissolved organic carbon bioavailability and bacterial growth following inflows to estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsV2msr8%3D&md5=c12f75aa1e19c0267f91ee0b744c16d1CAS |

Hitchcock, J. N., and Mitrovic, S. M. (2015b). Highs and lows: the effect of differently sized freshwater inflows on estuarine carbon, nitrogen, phosphorus, bacteria and chlorophyll-a dynamics. Estuarine, Coastal and Shelf Science 156, 71–82.
Highs and lows: the effect of differently sized freshwater inflows on estuarine carbon, nitrogen, phosphorus, bacteria and chlorophyll-a dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntVKqug%3D%3D&md5=8adddbcedc28e82cba37e95301c29e07CAS |

Hitchcock, J. N., Mitrovic, S. M., Kobayashi, T., and Westhorpe, D. P. (2010). Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries and Coasts 33, 78–91.
Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVOisw%3D%3D&md5=f775e4b6b9a0c8f812319368c7989de8CAS |

Hitchcock, J. N., Mitrovic, S. M., Hadwen, W. L., Roelke, D. L., Growns, I. O., and Rohlfs, A. M. (2016). Terrestrial dissolved organic carbon subsidizes estuarine zooplankton: an in situ mesocosm study. Limnology and Oceanography 61, 254–267.
Terrestrial dissolved organic carbon subsidizes estuarine zooplankton: an in situ mesocosm study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xot1Sjtw%3D%3D&md5=fb522f2155fe9578f0a447868e8a6f20CAS |

Hötzel, G., and Croome, R. (1999). A Phytoplankton Methods Manual for Australian Freshwaters. Occasional Paper Series 22/99, Land and Water Resources Research and Development Corporation, Canberra.

ISDR (2004). ‘Living with Risk: a Global Review of Disaster Reduction Initiatives. Vol 1.’ (United Nations: Geneva, Switzerland.)

Jansson, M., Bergström, A., Blomqvist, P., and Drakare, S. (2000). Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81, 3250–3255.
Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes.Crossref | GoogleScholarGoogle Scholar |

Jansson, M., Bergström, A.-K., Lymer, D., Vrede, K., and Karlsson, J. (2006). Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios. Microbial Ecology 52, 358–364.
Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsVais74%3D&md5=fc44691c768bace854c9fcb1b554bee6CAS | 16691326PubMed |

Joint, I., Henriksen, P., Fonnes, G. A., Bourne, D., Thingstad, T. F., and Riemann, B. (2002). Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms. Aquatic Microbial Ecology 29, 145–159.
Competition for inorganic nutrients between phytoplankton and bacterioplankton in nutrient manipulated mesocosms.Crossref | GoogleScholarGoogle Scholar |

Kritzberg, E., Cole, J. J., Pace, M. L., Granéli, W., and Bade, D. L. (2004). Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnology and Oceanography 49, 588–596.
Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFWnsr8%3D&md5=b7834580d8370425510af251ba17d6e5CAS |

Marie, D., Partensky, F., Jacquet, S., and Vaulot, D. (1997). Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63, 186–193.
| 1:CAS:528:DyaK2sXhs1Oiug%3D%3D&md5=ee7df4bf3fb11d1c92f4bb989da52d9cCAS | 16535483PubMed |

May, C. L., Koseff, J. R., Lucas, L. V., Cloern, J. E., and Schoellhamer, D. H. (2003). Effects of spatial and temporal variability of turbidity on phytoplankton blooms. Marine Ecology Progress Series 254, 111–128.
Effects of spatial and temporal variability of turbidity on phytoplankton blooms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFSrtLs%3D&md5=cc6f9b8f966ec10eb4d99af1203fe281CAS |

McDonald, D., Price, M. N., Goodrich, J., Nawrocki, E. P., DeSantis, T. Z., Probst, A., Andersen, G. L., Knight, R., and Hugenholtz, P. (2012). An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6, 610–618.
An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGgsbs%3D&md5=4be4227fb6cc9e5d1500a32a3d9ac1d9CAS | 22134646PubMed |

Moyer, R. P., Powell, C. E., Gordon, D. J., Long, J. S., and Bliss, C. M. (2015). Abundance, distribution, and fluxes of dissolved organic carbon (DOC) in four small sub-tropical rivers of the Tampa Bay Estuary (Florida, USA). Applied Geochemistry 63, 550–562.
Abundance, distribution, and fluxes of dissolved organic carbon (DOC) in four small sub-tropical rivers of the Tampa Bay Estuary (Florida, USA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXosVKktr0%3D&md5=76ade99838fd56b8f3034b4c9a69a345CAS |

Nicolle, A., Hallgren, P., von Einem, J., Kritzberg, E. S., Granéli, W., Persson, A., Bronmark, C., and Hansson, L. A. (2012). Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study. Freshwater Biology 57, 684–695.
Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study.Crossref | GoogleScholarGoogle Scholar |

Pinhassi, J., Gómez-Consarnau, L., Alonso-Sáez, L., Sala, M. M., Vidal, M., Pedrós-Alió, C., and Gasol, J. M. (2006). Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea. Aquatic Microbial Ecology 44, 241–252.
Seasonal changes in bacterioplankton nutrient limitation and their effects on bacterial community composition in the NW Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

Pittock, J., and Finlayson, C. M. (2011). Australia’s Murray–Darling Basin: freshwater ecosystem conservation options in an era of climate change. Marine and Freshwater Research 62, 232–243.
Australia’s Murray–Darling Basin: freshwater ecosystem conservation options in an era of climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKksbo%3D&md5=0518e9efcca34d7eeea956f9f6faf05bCAS |

Ramette, A. (2009). Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Applied and Environmental Microbiology 75, 2495–2505.
Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFChsLk%3D&md5=e1e4e2c0fa96da88c595d8db8aa6a9aeCAS | 19201961PubMed |

Saeck, E. A., Hadwen, W. L., Rissik, D., O’Brien, K. R., and Burford, M. A. (2013). Flow events drive patterns of phytoplankton distribution along a river–estuary–bay continuum. Marine and Freshwater Research 64, 655–670.
Flow events drive patterns of phytoplankton distribution along a river–estuary–bay continuum.Crossref | GoogleScholarGoogle Scholar |

Sanders, R. W. (2011). Alternative nutritional strategies in protists: symposium Introduction and a review of freshwater protists that combine photosynthesis and heterotrophy. The Journal of Eukaryotic Microbiology 58, 181–184.
Alternative nutritional strategies in protists: symposium Introduction and a review of freshwater protists that combine photosynthesis and heterotrophy.Crossref | GoogleScholarGoogle Scholar | 21477096PubMed |

Seymour, J., Seuront, L., and Mitchell, J. G. (2007). Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary. Estuarine, Coastal and Shelf Science 73, 651–666.
Microscale gradients of planktonic microbial communities above the sediment surface in a mangrove estuary.Crossref | GoogleScholarGoogle Scholar |

Smith, V. H. (2006). Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography 51, 377–384.
Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFaqtbs%3D&md5=92a1a9b55be853120b460bd9d316eec2CAS |

Solomon, C., Jones, S., Weidel, B., Buffam, I., Fork, M., Karlsson, J., Larsen, S., Lennon, J., Read, J., Sadro, S., and Saros, J. (2015). Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18, 376–389.
Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges.Crossref | GoogleScholarGoogle Scholar |

Stahl, D. A., Flowers, J. J., Hullar, M., and Davidson, S. (2013). Structure and function of microbial communities. In ‘The Prokaryotes’. pp. 299–327. (Springer: New York.)

Thingstad, T. F., Skjoldal, E. F., and Bohne, R. A. (1993). Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway. Marine Ecology Progress Series 99, 239–259.
Phosphorus cycling and algal-bacterial competition in Sandsfjord, western Norway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXis1Gnurs%3D&md5=210898ff0b60af1432bc64a214998373CAS |

Westhorpe, D. P., and Mitrovic, S. M. (2012). Dissolved organic carbon mobilisation in relation to variable discharges and environmental flows in a highly regulated lowland river. Marine and Freshwater Research 63, 1218–1230.
Dissolved organic carbon mobilisation in relation to variable discharges and environmental flows in a highly regulated lowland river.Crossref | GoogleScholarGoogle Scholar |

Westhorpe, D. P., Mitrovic, S. M., Ryan, D., and Kobayashi, T. (2010). Limitation of lowland riverine bacterioplankton by dissolved organic carbon and inorganic nutrients. Hydrobiologia 652, 101–117.
Limitation of lowland riverine bacterioplankton by dissolved organic carbon and inorganic nutrients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovV2jsbo%3D&md5=3324c65fb6567eb3ad97ea40b46eb147CAS |

Wilby, R. L., and Keenan, R. (2012). Adapting to flood risk under climate change. Progress in Physical Geography 36, 348–378.
Adapting to flood risk under climate change.Crossref | GoogleScholarGoogle Scholar |

Wilken, S., Huisman, J., Naus‐Wiezer, S., and Donk, E. (2013). Mixotrophic organisms become more heterotrophic with rising temperature. Ecology Letters 16, 225–233.
Mixotrophic organisms become more heterotrophic with rising temperature.Crossref | GoogleScholarGoogle Scholar | 23173644PubMed |