Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginner’s guide

Jennifer L. A. Shaw A B , Laura Weyrich A and Alan Cooper A
+ Author Affiliations
- Author Affiliations

A Australian Centre for Ancient DNA (ACAD), University of Adelaide, Darling Building, North Terrace, Adelaide, SA 5000, Australia.

B Corresponding author. Present address: Commonwealth Scientific and Industrial Research Organisation, Land and Water Flagship, Prescott Building, Waite Road, Urrbrae, SA 5064, Australia. Email: jennifer.shaw@csiro.au

Marine and Freshwater Research 68(1) 20-33 https://doi.org/10.1071/MF15361
Submitted: 21 September 2015  Accepted: 10 November 2015   Published: 1 March 2016

Abstract

Biological surveys are needed to monitor and assess the health of ecosystems and the species within them. However, morphology-based biodiversity surveys can be invasive, time consuming and financially expensive. Recently, environmental (e)DNA sequencing has been demonstrated as a potential alternative to morphological-based surveys because it enables the rapid and inexpensive detection of multiple taxa from DNA present in the environment. Numerous studies have shown that eDNA-based biodiversity surveys can provide considerable information about aquatic ecosystem function and health. Therefore, this molecular method has the potential to improve how current aquatic biological surveys are conducted. Currently, most eDNA literature is aimed at an audience with a moderate to advanced knowledge of DNA sequencing, creating a barrier for many ecologists who lack DNA sequencing expertise but wish to apply such methods to their research. The aim of this review is to provide guidance to non-geneticists regarding sequencing eDNA for aquatic biodiversity surveys and to highlight the requirements that need to be considered before the technique can be effectively incorporated into biomonitoring programs. Specifically, we provide details and recommendations on some of the major principles, from sample collection to bioinformatic analyses. For those areas where specific recommendations cannot be given, we have provided references to suitable literature.

Additional keywords: metabarcoding, metagenomics, methods, monitoring, NGS, summary.


References

Amend, A. S., Seifert, K. A., and Bruns, T. D. (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology 19, 5555–5565.
Quantifying microbial communities with 454 pyrosequencing: does read abundance count?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagsb0%3D&md5=ab96c3f9fc5829bd146b2c31d6371492CAS | 21050295PubMed |

Andersen, K., Bird, K. L., Rasmussen, M., Haile, J., Breuning-madsen, H., Kjaer, K. H., Orlando, L., Gilbert, M. T., and Willerslev, E. (2012). Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Molecular Ecology 21, 1966–1979.
Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGktrs%3D&md5=f9cb39151b012f33af90037afcfc02e7CAS | 21917035PubMed |

Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., and Patel, H. R. (2005). Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics 5, 209–219.
Basic principles of real-time quantitative PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Kmu7c%3D&md5=bc3f165e03dbd76d1d3b3b4fccf3c11eCAS | 15833050PubMed |

Baird, D. J., and Hajibabaei, M. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology 21, 2039–2044.
Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing.Crossref | GoogleScholarGoogle Scholar | 22590728PubMed |

Bellemain, E., Carlsen, T., and Brochmann, C. (2010). ITS as DNA bar-code for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology 10, 189.
ITS as DNA bar-code for fungi: an in silico approach reveals potential PCR biases.Crossref | GoogleScholarGoogle Scholar | 20618939PubMed |

Bik, H. M., Porazinska, D. L., Creer, S., Caporaso, J. G., Knight, R., and Thomas, W. K. (2012). Sequencing our way towards understanding global eukaryotic biodiversity. Trends in Ecology & Evolution 27, 233–243.
Sequencing our way towards understanding global eukaryotic biodiversity.Crossref | GoogleScholarGoogle Scholar |

Binladen, J., Gilbert, M. T. P., Bollback, J. P., Panitz, F., and Bendixen, C. (2007). The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One 2, e197.
The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing.Crossref | GoogleScholarGoogle Scholar | 17299583PubMed |

Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., Nekrutenko, A., and Taylor, J. (2010). Galaxy: a web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology 89, 19.10.1–19.10.21.
Galaxy: a web-based genome analysis tool for experimentalists.Crossref | GoogleScholarGoogle Scholar |

Burger, J., Hummel, S., Herrmann, B., and Henke, W. (1999). DNA preservation: a microsatellite-DNA study on ancient skeletal remains. Electrophoresis 20, 1722–1728.
DNA preservation: a microsatellite-DNA study on ancient skeletal remains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVyhtLw%3D&md5=b2483825a432b79e334be0df51b62f1fCAS | 10435438PubMed |

Burgess, K. S., Fazekas, A. J., and Kesanakurti, P. R. (2011). Discriminating plant species in a local temperate flora using the rbcL and matK DNA barcode. Methods in Ecology and Evolution 2, 333–340.
Discriminating plant species in a local temperate flora using the rbcL and matK DNA barcode.Crossref | GoogleScholarGoogle Scholar |

Burkholder, J. M. (2001). Eutrophication and oligotrophication. In ‘Encyclopedia of Biodiversity’. (Ed. S. Levin.) Vol. 2, pp. 649–670. (Academic Press: New York.)

Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W., Almond, R. E. A., Baillie, J. E. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., Chanson, J., Chenery, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A., Galloway, J. N., Genovesi, P., Gregory, R. D., Hockings, M., Kapos, V., Lamarque, J., Leverington, F., Loh, J., McGeoch, M. A., McRae, L., Minasyan, A., Hernandez Morcillo, M., Oldfield, T. E. E., Pauly, D., Quader, S., Revenga, C., Sauer, J. R., Skolnik, B., Spear, D., Stanwell-smith, D., Stuart, S. N., Symes, A., Tierney, M., Tyrell, T. D., and Vie Reg Watson, J. (2010). Global biodiversity: indicators of recent declines. Science 328, 1164–1168.
Global biodiversity: indicators of recent declines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVGjsb0%3D&md5=373fc1a21d7b01e6e275667184d465b6CAS |

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Gonzalez Peña, A., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336.
QIIME allows analysis of high-throughput community sequencing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFalurg%3D&md5=70359596b4284c2a688a79bdb1c415fdCAS | 20383131PubMed |

Chakravorty, S., Helb, D., Burday, M., Connell, N., and Alland, D. (2007). A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods 69, 330–339.
A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1ajsrc%3D&md5=54531529bcfcd422eaf6dc03a58d03dcCAS | 17391789PubMed |

Chariton, A. A., Court, L. N., Hartley, D. M., Colloff, M. J., and Hardy, C. M. (2010). Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Frontiers in Ecology and the Environment 8, 233–238.
Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA.Crossref | GoogleScholarGoogle Scholar |

Claesson, M., Wang, Q., and O’Sullivan, O. (2010). Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research 38, e200.
Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions.Crossref | GoogleScholarGoogle Scholar | 20880993PubMed |

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.
Non-parametric multivariate analyses of changes in community structure.Crossref | GoogleScholarGoogle Scholar |

Clarke, L. J., Soubrier, J., Weyrich, L., and Cooper, A. (2014). Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Molecular Ecology 14, 1160–1170.
Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslCqsbfK&md5=cf7e877bf5438bfba4b6726650eaf559CAS |

Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M., and Tiedje, J. M. (2005). The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Research 33, D294–D296.
The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVerug%3D%3D&md5=33b4b0e6b6ac247098a7f5a4a0404a44CAS | 15608200PubMed |

Cooper, A., and Poinar, H. (2000). Ancient DNA: do it right or not at all. Science 289, 1139b.
Ancient DNA: do it right or not at all.Crossref | GoogleScholarGoogle Scholar |

Crain, C. C., Halpern, B. S., Beck, M. W., and Kappel, C. V. (2009). Understanding and managing human threats to the coastal marine environment. Annals of the New York Academy of Sciences 1162, 39–62.
Understanding and managing human threats to the coastal marine environment.Crossref | GoogleScholarGoogle Scholar |

Creer, S., Fonseca, V. G., Porazinska, D. L., Giblin-davis, R. M., Sung, W., Power, D. M., Packer, M., Carvalho, G. R., Blaxter, M. L., Lambshead, P. J., and Thomas, W. K. (2010). Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 19, 4–20.
Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises.Crossref | GoogleScholarGoogle Scholar | 20331766PubMed |

Daniel, R., and van Oorschot, R. A. H. (2011). An investigation of the presence of DNA on unused laboratory gloves. Forensic Science International 45, e46.

de Cárcer, D. A., Denman, S. E., McSweeney, C., and Morrison, M. (2011). Strategy for modular tagged high-throughput amplicon sequencing. Applied and Environmental Microbiology 77, 6310–6312.
Strategy for modular tagged high-throughput amplicon sequencing.Crossref | GoogleScholarGoogle Scholar | 21764953PubMed |

Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W., and Jarman, S. N. (2013). Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? Molecular Ecology Resources 13, 620–633.
Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVaqtrY%3D&md5=f7d6c68cb1fd77e0468c4a8cc321a129CAS | 23590207PubMed |

Deiner, K., Walser, J., Machler, E., and Altermatt, F. (2015). Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation 183, 53–63.
Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA.Crossref | GoogleScholarGoogle Scholar |

Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., and Pompanon, F. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS One 6, e23398.
Persistence of environmental DNA in freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFanur3E&md5=3e61e469162f898d1a78083c2caa9b66CAS | 21858099PubMed |

DeSantis, T., Stone, C., Murray, S., Moberg, J., and Andersen, G. (2005). Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray. FEMS Microbiology Letters 245, 271–278.
Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtlanurk%3D&md5=48195de63d65e6d7b83b4477c0355e13CAS | 15837382PubMed |

Douterelo, I., Sharpe, R. L., and Boxall, J. B. (2013). Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Research 47, 503–516.
Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhslahu7%2FE&md5=b3d0d3b6a8af2da47915d694d1eae7bdCAS | 23182667PubMed |

Drury, B., Rosi-Marshall, E., and Kelly, J. J. (2013). Wastewater treatment effluent reduces abundance and diversity of benthic bacterial communities in urban and suburban rivers. Applied and Environmental Microbiology 79, 1897.
Wastewater treatment effluent reduces abundance and diversity of benthic bacterial communities in urban and suburban rivers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVGrt7k%3D&md5=cc2ff778a51e35bf87fb4b09b2ad2f48CAS | 23315724PubMed |

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Knowler, D. J., Leveque, C., Naiman, R. J., Prieur-Richard, A. H., Soto, D., Stiassny, M. L., and Sullivan, C. A. (2006). Freshwater biodiversity: importance, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
Freshwater biodiversity: importance, status and conservation challenges.Crossref | GoogleScholarGoogle Scholar | 16336747PubMed |

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.
Search and clustering orders of magnitude faster than BLAST.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WhtbzM&md5=fe304dcc37de187a309c2879cf36e5d2CAS | 20709691PubMed |

Elbrecht, V., and Leese, F. (2015). Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass–sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324.
Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass–sequence relationships with an innovative metabarcoding protocol.Crossref | GoogleScholarGoogle Scholar | 26154168PubMed |

Engelbrektson, A., Kunin, V., Wrighton, K., Zvenigorodsky, N., Chen, F., Ochman, H., and Hugenholtz, P. (2010). Experimental factors affecting PCR-based estimates of microbial species richness and evenness. The ISME Journal 4, 642–647.
Experimental factors affecting PCR-based estimates of microbial species richness and evenness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFemtbo%3D&md5=d58758e7b046d469d15b7c4192e7ab09CAS | 20090784PubMed |

Feinstein, L. M., Sul, W. J., and Blackwood, C. B. (2009). Assessment of bias associated with incomplete extraction of microbial DNA from soil. Applied and Environmental Microbiology 75, 5428–5433.
Assessment of bias associated with incomplete extraction of microbial DNA from soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVeltLbO&md5=335e466d193e746f779243b946eeb066CAS | 19561189PubMed |

Ficetola, G. F., Miaud, C., Pompanon, F., and Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters 4, 423–425.
Species detection using environmental DNA from water samples.Crossref | GoogleScholarGoogle Scholar | 18400683PubMed |

Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L., Lopes, C. M., Boyer, F., Pompanon, F., Raye, G., and Taberlet, P. (2015). Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Molecular Ecology Resources 15, 543–556.
Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFamtbk%3D&md5=290029dce5d4cc7dc0bcc0e124643c30CAS | 25327646PubMed |

Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., Owens, S., Gilbert, J. A., Wall, D. H., and Caporaso, G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America 109, 21390–21395.
Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotVWgtA%3D%3D&md5=89a1510f30620b01ceb574fd6194cc1eCAS | 23236140PubMed |

Finkbeiner, S. R., Allred, A. F., Tarr, P. I., Klein, E. J., Kirkwood, C. D., and Wang, D. (2008). Metagenomic analysis of human diarrhea: viral detection and discovery. PLoS Pathogens 4, e1000011.
Metagenomic analysis of human diarrhea: viral detection and discovery.Crossref | GoogleScholarGoogle Scholar | 18398449PubMed |

Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, C., Ramankutty, N., and Snyder, P. K. (2005). Global consequences of land use. Science 309, 570–574.
Global consequences of land use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFChtrs%3D&md5=597be53e5de9914d162cb66461a6bfcfCAS | 16040698PubMed |

Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lambshead, P. J. D., Thomas, W. K., and Creer, S. (2010). Second-generation environmental sequencing unmasks marine metazoan biodiversity. Nature Communications 1, 98.
Second-generation environmental sequencing unmasks marine metazoan biodiversity.Crossref | GoogleScholarGoogle Scholar | 20981026PubMed |

Fraise, A. P., Maillard, J. Y., and Sattar, S. A. (2013). ‘Russell, Hugo & Ayliffe’s Principles and Practice of Disinfection, Preservation and Sterilization’, 5th edn. (Wiley-Blackwell: Oxford, UK.) https://doi.org/10.1002/9781118425831.index

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152.
CD-HIT: accelerated for clustering the next-generation sequencing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKnsb%2FE&md5=6832845a1feda0ba6ed380dd0f135e76CAS | 23060610PubMed |

Gefrides, L. A., Powell, M. C., Donley, M. A., and Kahn, R. (2010). UV irradiation and autoclave treatment for elimination of contaminating DNA from laboratory consumables. Forensic Science International: Genetics 4, 89–94.
UV irradiation and autoclave treatment for elimination of contaminating DNA from laboratory consumables.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslCgsLk%3D&md5=d7cb0c8b0f36844cb0896e65779fda09CAS |

Gerardi, M. H. (2006). ‘Wastewater Bacteria.’ (Wiley: Hoboken, NJ.)

Ghodsi, M., Liu, B., and Pop, M. (2011). DNACLUST: accurate and efficient clustering of phylogenetic marker genes. BMC Bioinformatics 12, 271.
DNACLUST: accurate and efficient clustering of phylogenetic marker genes.Crossref | GoogleScholarGoogle Scholar | 21718538PubMed |

Gomez-Alvarez, V., Revetta, R. P., and Santo Domingo, J. W. (2012). Metagenomic analyses of drinking water receiving different disinfection treatments. Applied and Environmental Microbiology 78, 6095–6102.
Metagenomic analyses of drinking water receiving different disinfection treatments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GiurfL&md5=0d64b8e59d8c15117efd2b2d840a318aCAS | 22729545PubMed |

Gotelli, N. J., and Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379–391.
Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness.Crossref | GoogleScholarGoogle Scholar |

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C., and Baird, D. J. (2011). Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6, e17497.
Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2rt7c%3D&md5=9fce3617ba6e5620d957d02c09f703e0CAS | 21533287PubMed |

Hammes, F., Berney, M., Wang, Y., Vital, M., Koster, O., and Egli, T. (2008). Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes. Water Research 42, 269–277.
Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGlur%2FF&md5=322d87a639c568805871b28acb250fe5CAS | 17659762PubMed |

Hardy, C. M., Adams, M., Jerry, D. R., Court, L. N., Morgan, M. J., and Hartley, D. M. (2011). DNA barcoding to support conservation: species identification, genetic structure, and biogeography of fishes in the Murray–Darling River Basin, Australia. Marine and Freshwater Research 62, 887–901.
DNA barcoding to support conservation: species identification, genetic structure, and biogeography of fishes in the Murray–Darling River Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOgu7jF&md5=ce3c03b726ffb532d67dcc3b3b2f41b2CAS |

Hebert, P. D. N., Ratnasingham, S., and deWaard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings. Biological Sciences 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=39fdfafc1cbc1fd254faa76321c50bcaCAS |

Hoefel, D., Grooby, W. L., Monis, P., Andrews, S., and Saint, C. (2003). A comparative study of carboxyflourescin diacetate and carboxyflourescin diacetate succinimidyl ester as indicators of bacterial activity. Journal of Microbiological Methods 52, 379–388.
A comparative study of carboxyflourescin diacetate and carboxyflourescin diacetate succinimidyl ester as indicators of bacterial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtF2jsw%3D%3D&md5=a61f8967a63dc3f61f9bc7c9f6c389edCAS | 12531507PubMed |

Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., and Ratnasingham, S. M. van der Bank, M. W. Chase, R. S. Cowan, D. L. Erickson, A. J. Fazekas, S. W. Graham, K. E. Jamesi, K.-J. Kim, W. J. Kress, H. Schneider, J. van AlphenStahl, S. C.H. Barrett, C. van den Berg, D. Bogarin, K. S. Burgess, K. M. Camerono, M. Carine, J. Chacón, A. Clark, J. J. Clarkson, F. Conrad, D. S. Devey, C. S. Ford, T. A. J. Hedderson, M. L. Hollingsworth, B. C. Husband, L. J. Kelly, P. R. Kesanakurti, J. Sung Kim, Y.-D. Kim, R. Lahaye, H.-L. Lee, D. G. Long, S. Madriñán, O. Maurin, I. Meusnier, S. G. Newmaster, C.-W. Park, D. M. Percy, G. Petersen, J. E. Richardson, G. A. Salazar, V. Savolainen, O. Seberg, M. J. Wilkinson, D.-K. Yi, and D. P. Little (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106, 12794–12797. 10.1073/PNAS.0905845106

Hurt, R. A., Qiu, X., Wu, L., Roh, Y., Palumbo, A. V., Tiedje, J. M., and Zhou, J. (2001). Simultaneous recovery of RNA and DNA from soils and sediments. Applied and Environmental Microbiology 67, 4495–4503.
Simultaneous recovery of RNA and DNA from soils and sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1Wis7k%3D&md5=c87c1bf42c635a3ae1e85f41899b8a60CAS | 11571148PubMed |

Huson, D. H., Auch, A. F., Qi, J., and Schuster, S. C. (2007). MEGAN analysis of metagenomic data. Genome Research 17, 377–386.
MEGAN analysis of metagenomic data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12hsr8%3D&md5=546d9951faebce285b915d7c35f75d4cCAS | 17255551PubMed |

Hwang, C., Ling, F., Andersen, G. L., LeChevallier, M. W., and Liu, W. (2012). Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. Applied and Environmental Microbiology 78, 7856.
Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1eju7fI&md5=2c37fcb671cf1dbe79c65eb1b0a6e507CAS | 22941076PubMed |

Ji, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., Kitching, R., Dolman, P. M., Woodcock, P., Edwards, F. A., Larsen, T. H., Hsu, W. W., Benedick, S., Hamer, K. C., Wilcove, D. S., Bruce, C., Wang, X., Levi, T., Lott, M., Emerson, B. C., and Yu, D. W. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters 16, 1245–1257.
Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding.Crossref | GoogleScholarGoogle Scholar | 23910579PubMed |

Jumpponen, A. (2007). Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data. Microbial Ecology 53, 233–246.
Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKksbg%3D&md5=57fbe5ddc8754098f2ed42d170bea3cdCAS | 17106807PubMed |

Karr, J. R., and Chu, E. W. (1999). ‘Restoring Life in Running Waters: Better Biological Monitoring.’ (Island Press: Washington, DC.)

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organisation and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organisation and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kelly, R. P., Port, J. A., Yamahara, K. M., and Crowder, L. B. (2014). Using environmental DNA to census marine fishes in a large mesocosm. PLoS One 9, e86175.
Using environmental DNA to census marine fishes in a large mesocosm.Crossref | GoogleScholarGoogle Scholar | 24454960PubMed |

Kimes, N. E., Callaghan, A. V., Aktas, D. F., Smith, W. L., Sunner, J., Golding, B., Drozdowska, M., Hazen, T. C., Suflita, J. M., and Morris, P. J. (2013). Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Frontiers in Microbiology 4, 50.
Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill.Crossref | GoogleScholarGoogle Scholar | 23508965PubMed |

Koeppel, A. F., and Wu, M. (2013). Surprisingly extensive mixed phylogenetic and ecological signals among bacterial operational taxonomic units. Nucleic Acids Research 41, 5175–5188.
Surprisingly extensive mixed phylogenetic and ecological signals among bacterial operational taxonomic units.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos1ykurc%3D&md5=b4a6e39792f98228424bf8a7a1d86d39CAS | 23571758PubMed |

Kunin, V., Engelbrektson, A., Ochman, H., and Hugenholtz, P. (2010). Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology 12, 118–123.
Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFaisb4%3D&md5=350f97562abc9f418f817c07f3bbfea8CAS | 19725865PubMed |

Kwok, S., and Higuchi, R. (1989). Avoiding false positives with PCR. Nature 339, 237–238.
Avoiding false positives with PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M3jvVGqsw%3D%3D&md5=c0979424cf033173d64101e6e5fb3321CAS | 2716852PubMed |

Laramie, M. B., Pilliod, D. S., and Goldberg, C. S. (2015). Charecterising the distribution of an endangered salmonid using eDNA analysis. Biological Conservation 183, 29–37.
Charecterising the distribution of an endangered salmonid using eDNA analysis.Crossref | GoogleScholarGoogle Scholar |

Lee, Z. M. P., Bussema, C., and Schmidt, T. M. (2009). Rrndb: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Research 37, D489–D493.
Rrndb: documenting the number of rRNA and tRNA genes in bacteria and archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFejtL7P&md5=20834ebf1c9ef4c860d4a8bc78894038CAS |

Lewis, G. D., and Metcalf, T. G. (1988). Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis a virus and human rotavirus, from oyster, water, and sediment samples. Applied and Environmental Microbiology 54, 1983–1988.
| 1:STN:280:DyaL1M%2FisVKnsw%3D%3D&md5=fb60a913c6f367517c92ff901fb86ecdCAS | 2845860PubMed |

Lim, Y. W., Kim, B. K., and Kim, C. (2010). Assessment of soil fungal communities using pyrosequencing. Journal of Microbiology (Seoul, Korea) 48, 284–289.
Assessment of soil fungal communities using pyrosequencing.Crossref | GoogleScholarGoogle Scholar |

Logue, J. B., Bürgmann, H., and Robinson, C. T. (2008). Progress in the ecological genetics and biodiversity of freshwater bacteria. Bioscience 58, 103–113.
Progress in the ecological genetics and biodiversity of freshwater bacteria.Crossref | GoogleScholarGoogle Scholar |

Lozupone, C. A., and Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71, 8228–8235.
UniFrac: a new phylogenetic method for comparing microbial communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlehtb7K&md5=cb0ed409905d212ae832890002aaad5dCAS |

Lozupone, C. A., and Knight, R. (2008). Species divergence and the measurement of microbial diversity. FEMS Microbiology Reviews 32, 557–578.
Species divergence and the measurement of microbial diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVyht7Y%3D&md5=569502fed587e220cb02aa5f4d1ddd30CAS | 18435746PubMed |

Lozupone, C. A., Hamady, M., and Knight, R. (2006). UniFrac: an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 7, 371.
UniFrac: an online tool for comparing microbial community diversity in a phylogenetic context.Crossref | GoogleScholarGoogle Scholar |

Mahé, F., Rognes, T., Quince, C., de Vargas, C., and Dunthorn, M. (2014). Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593.
Swarm: robust and fast clustering method for amplicon-based studies.Crossref | GoogleScholarGoogle Scholar | 25276506PubMed |

Mahmoudi, N., Slater, G. F., and Fulthorpe, R. R. (2011). Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Canadian Journal of Microbiology 57, 623–628.
Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVShsLvO&md5=dd93bcae07e2af245c4dfb12a649e453CAS | 21815819PubMed |

Mardis, E. R. (2008). Next generation DNA sequencing methods. Annual Review of Genomics and Human Genetics 9, 387–402.
Next generation DNA sequencing methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SnsbbJ&md5=edd816f0219fac9e7766494a1d9a7a78CAS | 18576944PubMed |

Martin-Laurent, F., Philipot, L., Hallet, S., Chaussod, R., Germon, J. C., Soulas, G., and Catroux, G. (2001). DNA extraction from soils: old bias for new microbial diversity analysis methods. Applied and Environmental Microbiology 67, 2354–2359.
DNA extraction from soils: old bias for new microbial diversity analysis methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlGmsLg%3D&md5=7ea6c7d9b3943d46eb3c6d266a7b3420CAS | 11319122PubMed |

Medinger, R., Nolte, V., and Pandey, R. M. (2010). Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Molecular Ecology 19, 32–40.
Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms.Crossref | GoogleScholarGoogle Scholar | 20331768PubMed |

Mende, D. R., Waller, A. S., Sunagawa, S., Järvelin, A. I., Chan, M. M., Arumugam, M., Raes, J., and Bork, P. (2012). Assessment of metagenomic assembly using simulated next generation sequencing data. PLoS One 7, e31386.
Assessment of metagenomic assembly using simulated next generation sequencing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFyns7Y%3D&md5=e97734c7088c4d4129a0f93ce69dd136CAS | 22384016PubMed |

Merkes, C., McCalla, S. G., Jensen, N. R., Gaikowski, M. P., and Amberg, J. J. (2014). Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data. PLoS One 9, e113346.
Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data.Crossref | GoogleScholarGoogle Scholar | 25402206PubMed |

Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E. M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., Wilkening, J., and Edwards, R. A. (2008). The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386.
The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGjsrbM&md5=8bfc4a4a360c05e5c52595c376ae5c8eCAS | 18803844PubMed |

Muyzer, G., de Waal, E. C., and Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59, 695–700.
| 1:CAS:528:DyaK3sXit1Kktrk%3D&md5=e546eb134bfcf43d2089320238e160feCAS | 7683183PubMed |

Nilsson, R. H., Kristiansson, E., Ryberg, M., Hallenberg, N., and Larsson, K. H. (2008). Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics. 4, 193–201.

Patel, R. K., and Jain, M. (2012). NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7, e30619.
NGS QC toolkit: a toolkit for quality control of next generation sequencing data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFyks7k%3D&md5=1d610f0616f78552c53d471f9dec0bbdCAS | 22312429PubMed |

Pennisi, E. (2011). Will computers crash genomics? Science 331, 666–668.
Will computers crash genomics?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVKgtb0%3D&md5=0ca006002daf6513adcf2835be6fd3b5CAS | 21310981PubMed |

Petrosino, J. F., Highlander, S., Luna, R. A., Gibbs, R. A., and Versalovic, J. (2009). Metagenomic pyrosequencing and microbial identification. Clinical Chemistry 55, 856–866.
Metagenomic pyrosequencing and microbial identification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWmsbc%3D&md5=b69580747366f39e0dc25df313df4d30CAS | 19264858PubMed |

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., and Waits, L. P. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Canadian Journal of Fisheries and Aquatic Sciences 70, 1123–1130.
Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVehtL3P&md5=959be7aa732843f4ad874fd25e32d6c8CAS |

Polz, M. F., and Cavanaugh, C. M. (1998). Bias in template-to-product ratios in multi-template PCR. Applied and Environmental Microbiology 64, 3724–3730.
| 1:CAS:528:DyaK1cXms1entrc%3D&md5=3cd96767817e33fca45e3691fb5f03f0CAS | 9758791PubMed |

Porazinska, D. L., Giblin-Davis, R. M., Faller, L., Farmerie, W., Kanzaki, N., Morris, K., Powers, T. O., Tucker, A. E., Sung, W., and Thomas, W. K. (2009). Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Molecular Ecology Resources 9, 1439–1450.
Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhur3I&md5=11abfcaf32d2565c043019e6bc16f68dCAS | 21564930PubMed |

Resources Inventory Committee (1997). ‘Fish Collection Methods and Standards.’ (RIC: Vancouver, BC.)

Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., and Coissac, E. (2011). ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research 39, e145.
ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFCisbjF&md5=b3814e7e5cfa34c8a4a0f4e634299c0fCAS | 21930509PubMed |

Robertson, C. E., Harris, J. K., Wagner, B. D., Granger, D., Browne, K., Tatem, B., Feazel, L. M., Park, K., Pace, N. R., and Frank, D. N. (2013). Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29, 3100–3101.
Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVarsb%2FF&md5=cc1071b50c6c4099e2623111da77d487CAS | 24021386PubMed |

Rooney, A. P., and Ward, T. J. (2005). Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proceedings of the National Academy of Sciences of the United States of America 102, 5084–5089.
Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFemt7k%3D&md5=ada93a56267b894b201a30ab2cc2bfb3CAS | 15784739PubMed |

Roossinck, M. J. (2012). Plant virus metagenomics: biodiversity and ecology. Annual Review of Genetics 46, 359–369.
Plant virus metagenomics: biodiversity and ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyktbfK&md5=d95e809c1d475e7dad0e1dac95466321CAS | 22934641PubMed |

Rozen, S., and Skaletsky, H. (1999). Primer3 on the WWW for general users and biologist programmers. Bioinformatics methods and protocols 132, 365–386.
Primer3 on the WWW for general users and biologist programmers.Crossref | GoogleScholarGoogle Scholar |

Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., and Walker, A. W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology 12, 87.
Reagent and laboratory contamination can critically impact sequence-based microbiome analyses.Crossref | GoogleScholarGoogle Scholar | 25387460PubMed |

Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., Fungal Barcoding Consortium (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109, 6241–6246.
Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt12mu7o%3D&md5=8b356fe7c19487f977d74c8bd864f5acCAS | 22454494PubMed |

Shaw, J. L. A., Monis, P., Fabris, R., Ho, L., Braun, K., Drikas, M., and Cooper, A. (2014). Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing. Chemosphere 117, 185–192.
Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht12ntr%2FM&md5=66e2733fed1968002148968950850916CAS |

Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology 26, 1135–1145.
Next-generation DNA sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aisrzK&md5=74ff1acbbe418cc9f6965a82f6e1dc26CAS | 18846087PubMed |

Shokralla, S., Spall, J. L., Gibson, J. F., and Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology 21, 1794–1805.
Next-generation sequencing technologies for environmental DNA research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGksLo%3D&md5=66f13fec8b3e26759d8c4c8f5a3b4432CAS | 22486820PubMed |

Sigsgaard, E. E., Carl, H., Moller, P. R., and Thomsen, P. F. (2015). Monitoring the near extinct European weather loach in Denmark based on environmental DNA from water. Biological Conservation 183, 46–52.
Monitoring the near extinct European weather loach in Denmark based on environmental DNA from water.Crossref | GoogleScholarGoogle Scholar |

Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., and Herndl, G. J. (2006). Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proceedings of the National Academy of Sciences of the United States of America 103, 12115–12120.
Microbial diversity in the deep sea and the underexplored ‘rare biosphere’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotlyisb4%3D&md5=d50e4d09ce3df11a6b7aff45957e578dCAS | 16880384PubMed |

Spear, S. F., Groves, J. D., Williams, L. A., and Waits, L. P. (2015). Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program. Biological Conservation 183, 38–45.
Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program.Crossref | GoogleScholarGoogle Scholar |

Stackebrandt, E., and Goebel, B. M. (1994). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44, 846–849.
Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFCnsb4%3D&md5=a2d399f7695c80cdf2d30314c7d0a48bCAS |

Strayer, D. L., Eviner, V. T., Jeschke, J. M., and Pace, M. L. (2006). Understanding the long-term effects of species invasions. Trends in Ecology & Evolution 21, 645–651.
Understanding the long-term effects of species invasions.Crossref | GoogleScholarGoogle Scholar |

Strickler, K. M., Fremier, A. K., and Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation 183, 85–92.
Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms.Crossref | GoogleScholarGoogle Scholar |

Sweeney, B. W., Battle, J. M., Jackson, J. K., and Dapkey, T. (2011). Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality? Journal of the North American Benthological Society. 30, 195–216.
Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality?Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., Coissac, E., Hajibabaei, M., and Rieseberg, L. H. (2012). Environmental DNA. Molecular Ecology 21, 1789–1793.
Environmental DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGksLw%3D&md5=010b460ffc6e0e6bb91f35ff263e0a39CAS | 22486819PubMed |

Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., and Kawabata, Z. (2012). Estimation of fish biomass using environmental DNA. PLoS One 7, e35868.
Estimation of fish biomass using environmental DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFWksrk%3D&md5=ac85cc131dd0d45ca8d415598b931fc1CAS | 22563411PubMed |

Thomsen, P. F., Kielgast, J., Iversen, L. L., Moller, P. R., Rasmussen, M., and Willerslev, E. (2012a). Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7, e41732.
Detection of a diverse marine fish fauna using environmental DNA from seawater samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12htLzK&md5=af0696e21e44c988fa9cbcbfbd393023CAS | 22952584PubMed |

Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, T. P., Orlando, L., and Willerslev, E. (2012b). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21, 2565–2573.
Monitoring endangered freshwater biodiversity using environmental DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wlu7vO&md5=eae79c85d30a5c1c2c774c65132d1e14CAS | 22151771PubMed |

Turner, C. R., Barnes, M. A., Xu, C. C. Y., Jones, S. E., Jerde, C. L., and Lodge, D. M. (2014). Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution 5, 676–684.
Particle size distribution and optimal capture of aqueous macrobial eDNA.Crossref | GoogleScholarGoogle Scholar |

Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J., Wu, D., Paulsen, I., Nelson, K. E., Nelson, W., Fouts, D. E., Levy, S., Knap, A. H., Lomas, M. W., Nealson, K., White, O., Peterson, J., Hoffman, J., Parson, R., Baden-Tilson, H., Pfannkoch, C., Rogers, Y., and Smith, O. H. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74.
Environmental genome shotgun sequencing of the Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1ansLw%3D&md5=c10a6b428877de602303af12f1f8aff0CAS | 15001713PubMed |

von Atzigen, N., and Kennedy, S. (2011). Application note: determining the best homogenization protocol for any soil. (Mo Bio Laboratories Inc.: Carlsbad, CA.) Available at http://www.mobio.com/images/custom/file/pdf/12855_apnote_web.pdf [Verified 1 October 2014].

Yoccoz, N. G., Brathen, K. A., Gielly, L., Haile, J., Edwards, M. E., Goslar, T., Von Stedingk, H., Brysting, A. K., Coissac, E., Pompanon, F., Sonstebo, J. H., Miquel, C., Valentini, A., De Bello, F., Chave, J., Thuiller, W., Wincker, P., Cruaud, C., Gavory, F., Rasmussen, M., Gilbert, M. T. P., Orlando, L., Brochmann, C., Willerslev, E., and Taberlet, P. (2012). DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology 21, 3647–3655.
DNA from soil mirrors plant taxonomic and growth form diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Cgt7zE&md5=8896dd53cd51b175011d473f5d3b1e1bCAS | 22507540PubMed |

Yu, D. W., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., and Ding, Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution 3, 613–623.
Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring.Crossref | GoogleScholarGoogle Scholar |