Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH FRONT (Open Access)

Big data opportunities and challenges for assessing multiple stressors across scales in aquatic ecosystems

K. A. Dafforn A B I , E. L. Johnston A B , A. Ferguson C , C.L. Humphrey D , W. Monk E , S. J. Nichols F , S. L. Simpson G , M. G. Tulbure A and D. J. Baird H
+ Author Affiliations
- Author Affiliations

A Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

B Sydney Institute of Marine Sciences, Mosman, NSW 2088 Australia.

C Office of Environment and Heritage, PO Box A290, Sydney South, NSW 1232, Australia.

D Environmental Research Institute of the Supervising Scientist, PO Box 461, Darwin, NT 0801, Australia.

E Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada.

F Institute for Applied Ecology and MDBfutures Collaborative Research Network, University of Canberra, Canberra, ACT 2601, Australia.

G CSIRO Land and Water, Centre for Environmental Contaminants Research, Locked Bag 2007, Kirrawee, NSW 2232, Australia.

H Environment Canada @ Canadian Rivers Institute, Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada.

I Corresponding author. Email k.dafforn@unsw.edu.au

Marine and Freshwater Research 67(4) 393-413 https://doi.org/10.1071/MF15108
Submitted: 12 March 2015  Accepted: 20 July 2015   Published: 22 October 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

Aquatic ecosystems are under threat from multiple stressors, which vary in distribution and intensity across temporal and spatial scales. Monitoring and assessment of these ecosystems have historically focussed on collection of physical and chemical information and increasingly include associated observations on biological condition. However, ecosystem assessment is often lacking because the scale and quality of biological observations frequently fail to match those available from physical and chemical measurements. The advent of high-performance computing, coupled with new earth observation platforms, has accelerated the adoption of molecular and remote sensing tools in ecosystem assessment. To assess how emerging science and tools can be applied to study multiple stressors on a large (ecosystem) scale and to facilitate greater integration of approaches among different scientific disciplines, a workshop was held on 10–12 September 2014 at the Sydney Institute of Marine Sciences, Australia. Here we introduce a conceptual framework for assessing multiple stressors across ecosystems using emerging sources of big data and critique a range of available big-data types that could support models for multiple stressors. We define big data as any set or series of data, which is either so large or complex, it becomes difficult to analyse using traditional data analysis methods.


References

Adam, E., Mutanga, O., and Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management 18, 281–296.
Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review.Crossref | GoogleScholarGoogle Scholar |

Allan, J. D., McIntyre, P. B., Smith, S. D. P., Halpern, B. S., Boyer, G. L., Buchsbaum, A., Burton, G. A., Campbell, L. M., Chadderton, W. L., and Ciborowski, J. J. H. (2013). Joint analysis of stressors and ecosystem services to enhance restoration effectiveness. Proceedings of the National Academy of Sciences of the United States of America 110, 372–377.
Joint analysis of stressors and ecosystem services to enhance restoration effectiveness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFeisQ%3D%3D&md5=29ea6e8665f955e550d2da2fa5bdfab4CAS | 23248308PubMed |

ANZECC/ARMCANZ (2000). Australian and New Zealand Guidelines for Freshwater and Marine Water Quality. (Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management of Australia and New Zealand: Canberra, ACT.)

Armanini, D. G., Monk, W. A., Carter, L., Cote, D., and Baird, D. J. (2013). Towards generalised reference condition models for environmental assessment: a case study on rivers in Atlantic Canada. Environmental Monitoring and Assessment 185, 6247–6259.
Towards generalised reference condition models for environmental assessment: a case study on rivers in Atlantic Canada.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3jtVCiuw%3D%3D&md5=cc05ca8eec7e13597df298dedd677aceCAS | 23250724PubMed |

Ayre, K. K., and Landis, W. G. (2012). A Bayesian approach to landscape ecological risk assessment applied to the Upper Grande Ronde Watershed, Oregon. Human and Ecological Risk Assessment: An International Journal 18, 946–970.
A Bayesian approach to landscape ecological risk assessment applied to the Upper Grande Ronde Watershed, Oregon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVemtrvJ&md5=c9de0d9fdad2bd2029554c86033439e7CAS |

Baird, D. J., and Hajibabaei, M. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology 21, 2039–2044.
Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing.Crossref | GoogleScholarGoogle Scholar | 22590728PubMed |

Baird, D. J., Van den Brink, P. J., Chariton, A. A., Dafforn, K. A., and Johnston, E. L. (2016). New diagnostics for multiply stressed marine and freshwater ecosystems: integrating models, ecoinformatics and big data. Marine and Freshwater Research 67, 391–392.
New diagnostics for multiply stressed marine and freshwater ecosystems: integrating models, ecoinformatics and big data.Crossref | GoogleScholarGoogle Scholar |

Baldwin, D. S., Colloff, M. J., Rees, G. N., Chariton, A. A., Watson, G. O., Court, L. N., Hartley, D. M., King, A. J., Wilson, J. S., and Hodda, M. (2013). Impacts of inundation and drought on eukaryote biodiversity in semi‐arid floodplain soils. Molecular Ecology 22, 1746–1758.
Impacts of inundation and drought on eukaryote biodiversity in semi‐arid floodplain soils.Crossref | GoogleScholarGoogle Scholar | 23379967PubMed |

Ban, N. C., Alidina, H. M., and Ardron, J. A. (2010). Cumulative impact mapping: advances, relevance and limitations to marine management and conservation, using Canada’s Pacific waters as a case study. Marine Policy 34, 876–886.
Cumulative impact mapping: advances, relevance and limitations to marine management and conservation, using Canada’s Pacific waters as a case study.Crossref | GoogleScholarGoogle Scholar |

Bayliss, P., van Dam, R. A., and Bartolo, R. E. (2012). Quantitative ecological risk assessment of the Magela Creek Floodplain in Kakadu National Park, Australia: comparing point source risks from the Ranger Uranium Mine to diffuse landscape-scale risks. Human and Ecological Risk Assessment: An International Journal 18, 115–151.
Quantitative ecological risk assessment of the Magela Creek Floodplain in Kakadu National Park, Australia: comparing point source risks from the Ranger Uranium Mine to diffuse landscape-scale risks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFGmtw%3D%3D&md5=c0de34619d74bb7861188e4e5e8d52e7CAS |

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society – B. Methodological 57, 289–300.

Borja, A., Bricker, S. B., Dauer, D. M., Demetriades, N. T., Ferreira, J. G., Forbes, A. T., Hutchings, P., Jia, X., Kenchington, R., Marques, J. C., and Zhu, C. (2008). Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Marine Pollution Bulletin 56, 1519–1537.
Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGltbnM&md5=78759fa62e7c3012b321fc6f4fbd84feCAS | 18715596PubMed |

Borja, A., Bald, J., Franco, J., Larreta, J., Muxika, I., Revilla, M., Rodríguez, J. G., Solaun, O., Uriarte, A., and Valencia, V. (2009). Using multiple ecosystem components, in assessing ecological status in Spanish (Basque Country) Atlantic marine waters. Marine Pollution Bulletin 59, 54–64.
Using multiple ecosystem components, in assessing ecological status in Spanish (Basque Country) Atlantic marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFSgs7Y%3D&md5=2a1b5acfdae19194994994c39993bfdfCAS | 19084879PubMed |

Bowler, D. E., and Benton, T. G. (2005). Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biological Reviews of the Cambridge Philosophical Society 80, 205–225.
Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics.Crossref | GoogleScholarGoogle Scholar | 15921049PubMed |

Burton, G. A., and Johnston, E. L. (2010). Assessing contaminated sediments in the context of multiple stressors. Environmental Toxicology and Chemistry 29, 2625–2643.
Assessing contaminated sediments in the context of multiple stressors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFags77O&md5=6cfb810e227a6cf7e4efcd8707804949CAS | 20931605PubMed |

Buyck, B. (1999). Taxonomists are an endangered species in Europe. Nature 401, 321.
Taxonomists are an endangered species in Europe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFamtb0%3D&md5=76da16a3a36bc62ff99f8d3c5790fd8aCAS | 16862089PubMed |

Carew, M. E., Pettigrove, V. J., Metzeling, L., and Hoffmann, A. A. (2013). Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species. Frontiers in Zoology 10, 45.
Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species.Crossref | GoogleScholarGoogle Scholar | 23919569PubMed |

Chariton, A. A., Court, L. N., Hartley, D. M., Colloff, M. J., and Hardy, C. M. (2010). Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Frontiers in Ecology and the Environment 8, 233–238.
Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA.Crossref | GoogleScholarGoogle Scholar |

Chariton, A. A., Ho, K. T., Proestou, D., Bik, H., Simpson, S. L., Portis, L. M., Cantwell, M. G., Baguley, J. G., Burgess, R. M., Pelletier, M. M., Perron, M., Gunsch, C., and Matthews, R. A. (2014). A molecular-based approach for examining responses of eukaryotes in microcosms to contaminant-spiked estuarine sediments. Environmental Toxicology and Chemistry 33, 359–369.
A molecular-based approach for examining responses of eukaryotes in microcosms to contaminant-spiked estuarine sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1Khuw%3D%3D&md5=22b7537048c294fa5e8bbd9234f08923CAS | 24399368PubMed |

Chariton, A., Sun, M. Y., Gibson, J., Webb, J. A., Leung, K. M. Y., Hickey, C. W., and Hose, G. C. (2016). Emergent technologies and analytical approaches for understanding the effects of multiple stressors in aquatic environments. Marine and Freshwater Research 67, 414–428.
Emergent technologies and analytical approaches for understanding the effects of multiple stressors in aquatic environments.Crossref | GoogleScholarGoogle Scholar |

Clarke, R. T., Wright, J. F., and Furse, M. T. (2003). RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160, 219–233.
RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers.Crossref | GoogleScholarGoogle Scholar |

Creer, S., Fonseca, V. G., Porazinska, D. L., Giblin‐Davis, R. M., Sung, W., Power, D. M., Packer, M., Carvalho, G. R., Blaxter, M. L., and Lambshead, P. J. D. (2010). Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Molecular Ecology 19, 4–20.
Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises.Crossref | GoogleScholarGoogle Scholar | 20331766PubMed |

Dafforn, K. A., Simpson, S. L., Kelaher, B. P., Clark, G. F., Komyakova, V., Wong, C. K. C., and Johnston, E. L. (2012). The challenge of choosing environmental indicators of anthropogenic impacts in estuaries. Environmental Pollution 163, 207–217.
The challenge of choosing environmental indicators of anthropogenic impacts in estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFKqsbg%3D&md5=d51701bd1c2d286e80b62cf3923ed6faCAS | 22265759PubMed |

Dafforn, K. A., Baird, D., Chariton, A., Sun, M., Brown, M., Simpson, S., Kelaher, B., and Johnston, E. (2014). Chapter one – faster, higher and stronger? The pros and cons of molecular faunal data for assessing ecosystem condition. Advances in Ecological Research 51, 1–40.
Chapter one – faster, higher and stronger? The pros and cons of molecular faunal data for assessing ecosystem condition.Crossref | GoogleScholarGoogle Scholar |

Davy-Bowker, J., Clarke, R., Johnson, R., Kokes, J., Murphy, J., and Zahrádková, S. (2006). A comparison of the European Water Framework Directive physical typology and RIVPACS-type models as alternative methods of establishing reference conditions for benthic macroinvertebrates. In ‘The Ecological Status of European Rivers: Evaluation and Intercalibration of Assessment Methods’. (Eds M. Furse, D. Hering, K. Brabec, A. Buffagni, L. Sandin, and P. M. Verdonschot.) pp. 91–105. (Springer: Dordrecht, Netherlands.)

Déry, S. J., Salomonson, V. V., Stieglitz, M., Hall, D. K., and Appel, I. (2005). An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska. Hydrological Processes 19, 2755–2774.
An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska.Crossref | GoogleScholarGoogle Scholar |

Dong, Z., Lewis, C. G., Burgess, R. M., and Shine, J. P. (2015). The Gellyfish: An in‐situ equilibrium‐based sampler for determining multiple free metal ion concentrations in marine ecosystems. Environmental Toxicology and Chemistry 34, 983–992.
The Gellyfish: An in‐situ equilibrium‐based sampler for determining multiple free metal ion concentrations in marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmt1Snsrs%3D&md5=dcf1e795e7ad46f88f07641af72b8f0eCAS | 25598362PubMed |

Frazier, P., Ryder, D., McIntyre, E., and Stewart, M. (2012). Understanding riverine habitat inundation patterns: remote sensing tools and techniques. Wetlands 32, 225–237.
Understanding riverine habitat inundation patterns: remote sensing tools and techniques.Crossref | GoogleScholarGoogle Scholar |

Fujioka, E., Soldevilla, M. S., Read, A. J., and Halpin, P. N. (2014). Integration of passive acoustic monitoring data into OBIS-SEAMAP, a global biogeographic database, to advance spatially explicit ecological assessments. Ecological Informatics 21, 59–73.
Integration of passive acoustic monitoring data into OBIS-SEAMAP, a global biogeographic database, to advance spatially explicit ecological assessments.Crossref | GoogleScholarGoogle Scholar |

Glibert, P. M., Fullerton, D., Burkholder, J. M., Cornwell, J. C., and Kana, T. M. (2011). Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco Estuary and comparative systems. Reviews in Fisheries Science 19, 358–417.
Ecological stoichiometry, biogeochemical cycling, invasive species, and aquatic food webs: San Francisco Estuary and comparative systems.Crossref | GoogleScholarGoogle Scholar |

Haase, P., Pauls, S. U., Schindehütte, K., and Sundermann, A. (2010). First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. Journal of the North American Benthological Society 29, 1279–1291.
First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results.Crossref | GoogleScholarGoogle Scholar |

Hajibabaei, M. (2007). The barcode of life initiative. Journal of Phycology 43, 20.

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C., and Baird, D. J. (2011). Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6, e17497.
Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2rt7c%3D&md5=23f6dee6ab0a1f1b54a9bd753f7f003eCAS | 21533287PubMed |

Halpern, B. S., and Fujita, R. (2013). Assumptions, challenges, and future directions in cumulative impact analysis. Ecosphere 4, art131.
Assumptions, challenges, and future directions in cumulative impact analysis.Crossref | GoogleScholarGoogle Scholar |

Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., Fujita, R., Heinemann, D., Lenihan, H. S., Madin, E. M. P., Perry, M. T., Selig, E. R., Spalding, M., Steneck, R., and Watson, R. (2008). A global map of human impact on marine ecosystems. Science 319, 948–952.
A global map of human impact on marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslOmtrk%3D&md5=4050180e6a0e685d994865e9b996f44eCAS | 18276889PubMed |

Hampton, S. E., Strasser, C. A., Tewksbury, J. J., Gram, W. K., Budden, A. E., Batcheller, A. L., Duke, C. S., and Porter, J. H. (2013). Big data and the future of ecology. Frontiers in Ecology and the Environment 11, 156–162.
Big data and the future of ecology.Crossref | GoogleScholarGoogle Scholar |

Harding, L. W. (1994). Long-term trends in the distribution of phytoplankton in Chesapeake Bay: roles of light, nutrients and streamflow. Marine Ecology Progress Series 104, 267–291.
Long-term trends in the distribution of phytoplankton in Chesapeake Bay: roles of light, nutrients and streamflow.Crossref | GoogleScholarGoogle Scholar |

Hargett, E. G., ZumBerge, J. R., Hawkins, C. P., and Olson, J. R. (2007). Development of a RIVPACS-type predictive model for bioassessment of wadeable streams in Wyoming. Ecological Indicators 7, 807–826.
Development of a RIVPACS-type predictive model for bioassessment of wadeable streams in Wyoming.Crossref | GoogleScholarGoogle Scholar |

Harris, G. P., and Heathwaite, A. L. (2012). Why is achieving good ecological outcomes in rivers so difficult? Freshwater Biology 57, 91–107.
Why is achieving good ecological outcomes in rivers so difficult?Crossref | GoogleScholarGoogle Scholar |

Hawkins, C. P., Olson, J. R., and Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society 29, 312–343.
The reference condition: predicting benchmarks for ecological and water-quality assessments.Crossref | GoogleScholarGoogle Scholar |

Hilty, J., and Merenlender, A. (2000). Faunal indicator taxa selection for monitoring ecosystem health. Biological Conservation 92, 185–197.
Faunal indicator taxa selection for monitoring ecosystem health.Crossref | GoogleScholarGoogle Scholar |

Humphrey, C., Storey, A., and Thurtell, L. (2000). AUSRIVAS: operator sample processing errors and temporal variability – implications for model sensitivity. In ‘Proceedings of an International Workshop held in Oxford, UK on 16th September 1997’. (Eds J. F. Wright, D. W. Sutcliffe, and M. T. Furse.) Record number: 0900386622, pp. 143–163. (Freshwater Biological Association: Ambleside, UK.)

Johnston, C. A., Ghioca, D. M., Tulbure, M., Bedford, B. L., Bourdaghs, M., Frieswyk, C. B., Vaccaro, L., and Zedler, J. B. (2008). Partitioning vegetation response to anthropogenic stress to develop multi-taxa wetland indicators. Ecological Applications 18, 983–1001.
Partitioning vegetation response to anthropogenic stress to develop multi-taxa wetland indicators.Crossref | GoogleScholarGoogle Scholar | 18536257PubMed |

Johnston, C. A., Zedler, J. B., Tulbure, M. G., Frieswyk, C. B., Bedford, B. L., and Vaccaro, L. (2009). A unifying approach for evaluating the condition of wetland plant communities and identifying related stressors. Ecological Applications 19, 1739–1757.
A unifying approach for evaluating the condition of wetland plant communities and identifying related stressors.Crossref | GoogleScholarGoogle Scholar | 19831067PubMed |

Jones, F. C. (2008). Taxonomic sufficiency: The influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environmental Reviews 16, 45–69.
Taxonomic sufficiency: The influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates.Crossref | GoogleScholarGoogle Scholar |

Kingsford, R., Curtin, A., and Porter, J. (1999). Water flows on Cooper Creek in arid Australia determine ‘boom’ and ‘bust’ periods for waterbirds. Biological Conservation 88, 231–248.
Water flows on Cooper Creek in arid Australia determine ‘boom’ and ‘bust’ periods for waterbirds.Crossref | GoogleScholarGoogle Scholar |

Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19, 573–592.
Disturbance, patchiness, and diversity in streams.Crossref | GoogleScholarGoogle Scholar |

LaRue, M. A., Lynch, H. J., Lyver, P. O. B., Barton, K., Ainley, D. G., Pollard, A., Fraser, W. R., and Ballard, G. (2014). A method for estimating colony sizes of Adélie penguins using remote sensing imagery. Polar Biology 37, 507–517.
A method for estimating colony sizes of Adélie penguins using remote sensing imagery.Crossref | GoogleScholarGoogle Scholar |

Leigh, C., Sheldon, F., Kingsford, R. T., and Arthington, A. H. (2010). Sequential floods drive ‘booms’ and wetland persistence in dryland rivers: a synthesis. Marine and Freshwater Research 61, 896–908.
Sequential floods drive ‘booms’ and wetland persistence in dryland rivers: a synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVansL%2FP&md5=8641aeb9b49c1b4c39dc8ebf1992fe06CAS |

McKinley, A. C., Miskiewicz, A., Taylor, M. D., and Johnston, E. L. (2011). Strong links between metal contamination, habitat modification and estuarine larval fish distributions. Environmental Pollution 159, 1499–1509.
Strong links between metal contamination, habitat modification and estuarine larval fish distributions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFOqsbs%3D&md5=b8f9e299f2379ed47b7f925869c24016CAS | 21470729PubMed |

McQueen, D. J., Post, J. R., and Mills, E. L. (1986). Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43, 1571–1581.
Trophic relationships in freshwater pelagic ecosystems.Crossref | GoogleScholarGoogle Scholar |

Metzeling, L., Robinson, D., Perriss, S., and Marchant, R. (2002). Temporal persistence of benthic invertebrate communities in south-eastern Australian streams: taxonomic resolution and implications for the use of predictive models. Marine and Freshwater Research 53, 1223–1234.
Temporal persistence of benthic invertebrate communities in south-eastern Australian streams: taxonomic resolution and implications for the use of predictive models.Crossref | GoogleScholarGoogle Scholar |

Morgan, M. J., Chariton, A. A., Hartley, D. M., Court, L. N., and Hardy, C. M. (2013). Improved inference of taxonomic richness from environmental DNA. PLoS One 8, e71974.
Improved inference of taxonomic richness from environmental DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSnur%2FP&md5=380a8eade77e4d9fed7e36bcac9100e8CAS | 23991013PubMed |

Nichols, S. J., Robinson, W. A., and Norris, R. H. (2010). Using the reference condition maintains the integrity of a bioassessment program in a changing climate. Journal of the North American Benthological Society 29, 1459–1471.
Using the reference condition maintains the integrity of a bioassessment program in a changing climate.Crossref | GoogleScholarGoogle Scholar |

Norris, R. H., and Thoms, M. C. (1999). What is river health? Freshwater Biology 41, 197–209.
What is river health?Crossref | GoogleScholarGoogle Scholar |

Norris, R. H., Webb, J. A., Nichols, S. J., Stewardson, M. J., and Harrison, E. T. (2012). Analyzing cause and effect in environmental assessments: using weighted evidence from the literature. Freshwater Science 31, 5–21.
Analyzing cause and effect in environmental assessments: using weighted evidence from the literature.Crossref | GoogleScholarGoogle Scholar |

Ostermiller, J. D., and Hawkins, C. P. (2004). Effects of sampling error on bioassessments of stream ecosystems: application to RIVPACS-type models. Journal of the North American Benthological Society 23, 363–382.
Effects of sampling error on bioassessments of stream ecosystems: application to RIVPACS-type models.Crossref | GoogleScholarGoogle Scholar |

Pettorelli, N., Safi, K., and Turner, W. (2014). Satellite remote sensing, biodiversity research and conservation of the future. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369, 20130190.
Satellite remote sensing, biodiversity research and conservation of the future.Crossref | GoogleScholarGoogle Scholar | 24733945PubMed |

Pilgrim, E. M., Jackson, S. A., Swenson, S., Turcsanyi, I., Friedman, E., Weigt, L., and Bagley, M. J. (2011). Incorporation of DNA barcoding into a large-scale biomonitoring program: opportunities and pitfalls. Journal of the North American Benthological Society 30, 217–231.
Incorporation of DNA barcoding into a large-scale biomonitoring program: opportunities and pitfalls.Crossref | GoogleScholarGoogle Scholar |

Pollino, C. A., Woodberry, O., Nicholson, A., Korb, K., and Hart, B. T. (2007). Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environmental Modelling & Software 22, 1140–1152.
Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment.Crossref | GoogleScholarGoogle Scholar |

Prinsenberg, S. J. (1980). Man-made changes in the freshwater input rates of Hudson and James Bays. Canadian Journal of Fisheries and Aquatic Sciences 37, 1101–1110.
Man-made changes in the freshwater input rates of Hudson and James Bays.Crossref | GoogleScholarGoogle Scholar |

Reynoldson, T. B., and Wright, J. F. (2000). The reference condition: problems and solutions. In ‘Assessing the Biological Quality of Freshwaters. RIVPACS and Other Techniques’. (Eds J. F. Wright, D. W. Sutcliffe, and M. T. Furse.) pp. 293–304 (Freshwater Biological Association Scientific Publication: Ambleside, UK.)

Reynoldson, T., Day, K., and Pascoe, T. (2000). The development of the BEAST: a predictive approach for assessing sediment quality in the North American Great Lakes. In ‘Assessing the Biological Quality of Freshwaters. RIVPACS and Other Techniques’. (Eds J. F. Wright, D. W. Sutcliffe, and M. T. Furse.) Reference number 0900386622, pp. 165–194. (Freshwater Biological Association: Ambleside, UK.)

Schäfer, R. B., Kefford, B. J., Metzeling, L., Liess, M., Burgert, S., Marchant, R., Pettigrove, V., Goonan, P., and Nugegoda, D. (2011). A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. The Science of the Total Environment 409, 2055–2063.
A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia.Crossref | GoogleScholarGoogle Scholar | 21376369PubMed |

Shokralla, S., Spall, J. L., Gibson, J. F., and Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology 21, 1794–1805.
Next-generation sequencing technologies for environmental DNA research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGksLo%3D&md5=baafc2c513911163895885c2ac23ddddCAS | 22486820PubMed |

Simpson, J., and Norris, R. (2000). Biological assessment of river quality: development of AUSRIVAS models and outputs. In ‘Assessing the Biological Quality of Freshwaters. RIVPACS and Other Techniques’. (Eds J. F. Wright, D. W. Sutcliffe, and M. T. Furse.) Reference number 0900386622, pp. 125–142. (Freshwater Biological Association: Ambleside, UK.)

Simpson, S. L., Batley, G. E., Chariton, A. A., Stauber, J. L., King, C. K., Chapman, J. C., Hyne, R. V., Gale, S. A., Roach, A. C., and Maher, W. A. (2005). Handbook for Sediment Quality Assessment. (CSIRO: Sydney, NSW.)

Sun, M. Y., Dafforn, K. A., Brown, M. V., and Johnston, E. L. (2012). Bacterial communities are sensitive indicators of contaminant stress. Marine Pollution Bulletin 64, 1029–1038.
Bacterial communities are sensitive indicators of contaminant stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1WmtL0%3D&md5=74869dbf8ad26ad53448c8dd5e66947cCAS | 22385752PubMed |

Sun, M. Y., Dafforn, K. A., Johnston, E. L., and Brown, M. V. (2013). Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environmental Microbiology 15, 2517–2531.
Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients.Crossref | GoogleScholarGoogle Scholar | 23647974PubMed |

Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., and Willerslev, E. (2012). Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 21, 2045–2050.
Towards next-generation biodiversity assessment using DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGkt7w%3D&md5=46d4a28454d581f0e912206047b97d8bCAS | 22486824PubMed |

Tolonen, K. T., Hamalainen, H., Lensu, A., Merilainen, J. J., Palomaki, A., and Karjalainen, J. (2014). The relevance of ecological status to ecosystem functions and services in a large boreal lake. Journal of Applied Ecology 51, 560–571.
The relevance of ecological status to ecosystem functions and services in a large boreal lake.Crossref | GoogleScholarGoogle Scholar |

Tulbure, M. G., and Broich, M. (2013). Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011. ISPRS Journal of Photogrammetry and Remote Sensing 79, 44–52.
Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011.Crossref | GoogleScholarGoogle Scholar |

Turak, E., Flack, L. K., Norris, R. H., Simpson, J., and Waddell, N. (1999). Assessment of river condition at a large spatial scale using predictive models. Freshwater Biology 41, 283–298.
Assessment of river condition at a large spatial scale using predictive models.Crossref | GoogleScholarGoogle Scholar |

Turner, W. (2014). Sensing biodiversity. Science 346, 301–302.
Sensing biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSjtbrI&md5=721f5e3d8568e4b520a128a52fbed6c2CAS | 25324372PubMed |

Van den Brink, P. J., Choung, C. B., Landis, W. G., Mayer-Pinto, M., Pettigrove, V., Scanes, P., Smith, R., and Stauber, J. L. (2016). New approaches to the ecological risk assessment of multiple stressors. Marine and Freshwater Research 67, 429–439.
New approaches to the ecological risk assessment of multiple stressors.Crossref | GoogleScholarGoogle Scholar |

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., and Liermann, C. R. (2010). Global threats to human water security and river biodiversity. Nature 467, 555–561.
Global threats to human water security and river biodiversity.Crossref | GoogleScholarGoogle Scholar | 20882010PubMed |

Vrana, B., Allan, I. J., Greenwood, R., Mills, G. A., Dominiak, E., Svensson, K., Knutsson, J., and Morrison, G. (2005). Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry 24, 845–868.
Passive sampling techniques for monitoring pollutants in water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CqtLnO&md5=d391ac88abdedcd945548083f7c8ec53CAS |

Waite, T. A., and Campbell, L. G. (2006). Controlling the false discovery rate and increasing statistical power in ecological studies. Ecoscience 13, 439–442.
Controlling the false discovery rate and increasing statistical power in ecological studies.Crossref | GoogleScholarGoogle Scholar |

Wiegers, J. K., Feder, H. M., Mortensen, L. S., Shaw, D. G., Wilson, V. J., and Landis, W. G. (1998). A Regional Multiple-Stressor Rank-Based Ecological Risk Assessment for the Fjord of Port Valdez, Alaska. Human and Ecological Risk Assessment: An International Journal 4, 1125–1173.
A Regional Multiple-Stressor Rank-Based Ecological Risk Assessment for the Fjord of Port Valdez, Alaska.Crossref | GoogleScholarGoogle Scholar |

Wright, J., Sutcliffe, D. F., and Furse, M. T. (2000). Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques. (Freshwater Biological Association: Ambleside, UK.)

Yates, A. G., and Bailey, R. C. (2010). Selecting objectively defined reference sites for stream bioassessment programs. Environmental Monitoring and Assessment 170, 129–140.
Selecting objectively defined reference sites for stream bioassessment programs.Crossref | GoogleScholarGoogle Scholar | 19902368PubMed |