Quantitative food webs and invertebrate assemblages of a large River: a spatiotemporal approach in floodplain shallow lakes
Débora A. Carvalho A E , Verónica Williner A B , Federico Giri A B , Carina Vaccari C and Pablo A. Collins A DA Laboratorio de Macrocrustáceos, Instituto Nacional de Limnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Litoral, Santa Fe, CP3000, Argentina.
B Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Santa Fe, CP3000, Argentina.
C Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, Entre Ríos, CP3000, Argentina.
D Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, CP3000, Argentina.
E Corresponding author. Email: dazevedo@inali.unl.edu.ar
Marine and Freshwater Research 68(2) 293-307 https://doi.org/10.1071/MF15095
Submitted: 1 December 2014 Accepted: 16 December 2015 Published: 24 March 2016
Abstract
To test the hypothesis that the hydrological regime of large Rivers affects the structure of invertebrate communities and food webs in floodplain lakes, we studied invertebrate assemblages and stomach contents of fish and decapods in two shallow lakes in the Paraná River floodplain, Argentina, with different connectivity (indirect and permanent, IPC; direct and temporal, DTC) to the fluvial system over three hydroperiods (flooding, transition, drought). Invertebrate assemblages exhibited temporal variation, with higher dissimilarity during the drought phase. However, zooplanktonic and pleustonic attributes varied spatiotemporally, and were better explained by other environmental variables. The food webs in the two lakes differed, with higher connectance and fewer predators in the DTC Lake. In general, the use of trophic resources by fish and decapods reflected the local and abundant resources in the system. The persistence of communities in floodplain lakes with temporary connectivity to the river may relate to the foraging decisions of consumers to buffer environmental fluctuations. The consumption of abundant resources highlighted the importance of autochthonous inputs into floodplain lakes. However, the variation in food supply as a key factor governing food-web structure and stability should be further investigated.
Additional keywords: bipartite networks, communities, hydrological regime, Paraná River, web metrics.
References
Almeida, V. L. L., Hahn, N. S., and Vazzoler, A. E. A. M. (1997). Feeding patterns in five predatory fishes of the high Paraná River floodplain (PR, Brazil). Ecology Freshwater Fish 6, 123–133.| Feeding patterns in five predatory fishes of the high Paraná River floodplain (PR, Brazil).Crossref | GoogleScholarGoogle Scholar |
Almeida-Neto, M., and Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software 26, 173–178.
| A straightforward computational approach for measuring nestedness using quantitative matrices.Crossref | GoogleScholarGoogle Scholar |
Almirón, A., Casciotta, J., Ciotek, L., and Giorgis, P. (2008). ‘Guía de los Peces del Parque Nacional Pre-Delta’, 1st edn. (Editorial APN: Buenos Aires.)
Anderson, M. J. (2001). A new metric for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
Banašek-Richter, C., Cattin, M. F., and Bersier, L. F. (2004). Sampling effects and the robustness of quantitative and qualitative food-web descriptors. Journal of Theoretical Biology 226, 23–32.
| Sampling effects and the robustness of quantitative and qualitative food-web descriptors.Crossref | GoogleScholarGoogle Scholar | 14637051PubMed |
Banašek-Richter, C., Bersier, L. F., Cattin, M. F., Baltensperger, R., Gabriel, J. P., Merz, Y., Ulanowicz, R. E., Tavares, A. F., Williams, D. D., Ruiter, P. C., Winemiller, K. O., and Naisbit, R. E. (2009). Complexity in quantitative food webs. Ecology 90, 1470–1477.
| Complexity in quantitative food webs.Crossref | GoogleScholarGoogle Scholar | 19569361PubMed |
Beckerman, A. P., Petchey, O. L., and Warren, P. H. (2006). Foraging biology predicts food web complexity. Proceedings of the National Academy of Sciences of the United States of America 103, 13745–13749.
| Foraging biology predicts food web complexity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFerurc%3D&md5=96f6d4f4ececa31f44234b3c50b28df9CAS | 16954193PubMed |
Benitez-Vieyra, S., Glinos, E., Medina, A. M., and Cocucci, A. A. (2012). Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae). Evolutionary Ecology 26, 1451–1468.
| Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae).Crossref | GoogleScholarGoogle Scholar |
Bersier, L. F., Banašek-Richter, C., and Cattin, M. F. (2002). Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407.
| Quantitative descriptors of food-web matrices.Crossref | GoogleScholarGoogle Scholar |
Bicudo, E. M., and Bicudo, D. C. (2004). ‘Amostragem em Limnologia’, 1st edn. (RIMA: São Carlos, Brazil.)
Blüthgen, N. (2010). Why network analysis is often disconnected from community ecology: a critique and a ecologist’s guide. Basic and Applied Ecology 11, 185–195.
| Why network analysis is often disconnected from community ecology: a critique and a ecologist’s guide.Crossref | GoogleScholarGoogle Scholar |
Bonetto, A. A., and Martinez de Ferrato, A. (1966). Introducción al estudio del zooplancton de las cuencas isleñas del Paraná Medio. Physis 27, 385–396.
Bonetto, A. A., Pignalberi, C., and Cordiviola, E. (1963). Ecología alimentaria del ‘amarillo’ y ‘moncholo’ Pimelodus clarias (Bloch) y Pimelodus albicans (Valenciennes) (Pisces, Pimelodidae). Physis 24, 87–94.
Bunn, S. E., and Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30, 492–507.
| Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity.Crossref | GoogleScholarGoogle Scholar | 12481916PubMed |
Bunn, S. E., Davies, P. M., and Winning, M. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48, 619–635.
| Sources of organic carbon supporting the food web of an arid zone floodplain river.Crossref | GoogleScholarGoogle Scholar |
Carvajal-Salamanca, J. L., Aránguiz-Acuña, A., Ramos-Jiliberto, R., and Zúñiga, L. R. (2008). Immediate and delayed life-history responses of Daphnia ambigua to conspecific cues. Journal of Plankton Research 30, 1117–1122.
| Immediate and delayed life-history responses of Daphnia ambigua to conspecific cues.Crossref | GoogleScholarGoogle Scholar |
Carvalho, D. A., Collins, P. A., and De Bonis, C. J. (2013). The mark–recapture method applied to population estimates of a freshwater crab on an alluvial plain. Marine and Freshwater Research 64, 317–323.
| The mark–recapture method applied to population estimates of a freshwater crab on an alluvial plain.Crossref | GoogleScholarGoogle Scholar |
Cohen, J. E., and Newman, C. M. (1988). Dynamic of food web organization. Ecology 69, 1655–1664.
| Dynamic of food web organization.Crossref | GoogleScholarGoogle Scholar |
Collins, P. A., and Paggi, J. C. (1997). Feeding ecology of Macrobrachium borellii (Nobili) (Decapoda: Palaemonidae) in the flood valley of the River Paraná, Argentina. Hydrobiologia 362, 21–30.
| Feeding ecology of Macrobrachium borellii (Nobili) (Decapoda: Palaemonidae) in the flood valley of the River Paraná, Argentina.Crossref | GoogleScholarGoogle Scholar |
Collins, P. A., Williner, V., and Giri, F. (2007a). Littoral communities: Macrocrustaceans. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi, and M. J. Parma.) pp. 277–301. (Springer: Berlin.)
Collins, P. A., Williner, V., and Giri, F. (2007b). Trophic relationships in Crustacea Decapoda of a river with floodplain. In ‘Predation in Organisms: a Distinct Phenomenon’. (Ed. A. M. T. Elewa.) pp. 59–86. (Springer: Berlin.)
Colwell, R. K. (2013). EstimateS: statistical estimation of species richness and shared species from samples. (Version 9). User's guide and application. Available at http://purl.oclc.org/estimates [Verified 28 July 2015]
Colwell, R. K., and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 345, 101–118.
| Estimating terrestrial biodiversity through extrapolation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fmt1GltA%3D%3D&md5=a50839324cf093876dbcf258c9778792CAS | 7972351PubMed |
Connor, E. F., and Simberloff, D. (1979). The assembly of species communities: chance or competition? Ecology 60, 1132–1140.
| The assembly of species communities: chance or competition?Crossref | GoogleScholarGoogle Scholar |
Diehl, S. (1993). Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships. Oikos 68, 151–157.
| Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships.Crossref | GoogleScholarGoogle Scholar |
Dodson, S. I., Ryan, S., Tollrian, R., and Lampert, W. (1997). Individual swimming behavior of Daphnia: effects of food, light and container size in four clones. Journal of Plankton Research 19, 1537–1552.
| Individual swimming behavior of Daphnia: effects of food, light and container size in four clones.Crossref | GoogleScholarGoogle Scholar |
Dominguez, E., and Fernández, H. R. (2009). ‘Macroinvertebrados Bentónicos de Sudamérica: Sistemática y Biología’, 1st edn. (Fundación Miguel Lillo: Tucumán, Argentina.)
Dominguez, E., Molineri, C., Pescador, M., Hubbard, M. D., and Nieto, C. (2006). ‘Ephemeroptera of South America. Aquatic Biodiversity of Latin America Series, Vol. 2.’ (Eds J. Adis, J. R Arias, G. Rueda-Delgado, and K. M. Wantzen.) (Pensoft Publishers: Sofia, Bulgaria.)
Dormann, C. F., Fründ, J., Blüthgen, N., and Gruber, B. (2009). Indices, graphs and null models: analysing bipartite ecological networks. The Open Ecology Journal 2, 7–24.
| Indices, graphs and null models: analysing bipartite ecological networks.Crossref | GoogleScholarGoogle Scholar |
Dormann, C. F., Fründ, J., and Gruber, B. (2014). Package ‘bipartite’. Visualizing bipartite networks and calculating some (ecological) indices (Version 2.04). (R Foundation for Statistical Computing.) Available at https://cran.r-project.org/web/packages/bipartite/index.html [Verified 28 July 2015].
Drago, E. C. (2007). The Physical Dynamics of the River-lake floodplain system. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi, and M. J. Parma.) pp. 83–122. (Springer: Berlin.)
Edmonson, W. T., and Winberg, I. B. P. (1971). ‘A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters’, 1st edn. (Blackwell Science: Oxford, UK.)
Esteves, F. A., and Marinho, C. C. (2011). Carbono Inorgânico. In: ‘Fundamentos de Limnologia’. (Ed F. A. Esteves.) pp. 209–238. (Interciência: Rio de Janeiro.)
Ezcurra de Drago, I., Marchese, M., and Montalto, L. (2007). Benthic invertebrates. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi, and M. J. Parma.) pp. 251–275. (Springer: Berlin.)
Frauendorf, T. C., Colón-Gaud, C., Whiles, M. R., Barnum, T. R., Lips, K. R., Pringle, C. M., and Kilham, S. S. (2013). Energy flow and the trophic basis of macroinvertebrates and amphibian production in a neotropical stream food web. Freshwater Biology 58, 1340–1352.
| Energy flow and the trophic basis of macroinvertebrates and amphibian production in a neotropical stream food web.Crossref | GoogleScholarGoogle Scholar |
González-Bergonzoni, I., Meerhoff, M., Davidson, T. A., Baattrup-Pedersen, A., and Jeppesen, E. (2012). Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems. Ecosystems 15, 492–503.
| Meta-analysis shows a consistent and strong latitudinal pattern in fish omnivory across ecosystems.Crossref | GoogleScholarGoogle Scholar |
Gotelli, N. J., and Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379–391.
| Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness.Crossref | GoogleScholarGoogle Scholar |
Goulding, M., and Ferreira, E. J. G. (1984). Shrimp-eating fishes and a case of preys witching in Amazon Rivers. Revista Brasileira de Zoologia 2, 85–97.
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.
Hoeinghaus, D. J., Winemiller, K. O., and Agostinho, A. A. (2007). Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10, 1019–1033.
| Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs.Crossref | GoogleScholarGoogle Scholar |
Iriondo, M. H., and Paira, A. R. (2007). Physical geography of the basin. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi, and M. J. Parma.) pp. 7–31. (Springer: Berlin.)
José de Paggi, S. (1993). Composition and seasonality of planktonic rotifers in limnetic and littoral regions of a floodplain lake (Paraná River system). Revue d’Hydrobiologie Tropicale 26, 53–63.
José de Paggi, S. (1995). Rotifera. In ‘Ecosistemas de Aguas Continentales. Metodologías para su Estudio’. (Eds E. C. Lopretto and G. Tell.) pp. 643–667. (Ediciones Sur: La Plata, Argentina.)
José de Paggi, S., and Paggi, J. C. (2008). Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. International Review of Hydrobiology 93, 659–678.
| Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain.Crossref | GoogleScholarGoogle Scholar |
Junk, W. J., Bailey, P., and Sparks, R. E. (1989). The flood pulse concept in river–floodplains systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110–127.
Kenny, D., and Loehle, C. (1991). Are food webs randomly connected? Ecology 72, 1794–1799.
| Are food webs randomly connected?Crossref | GoogleScholarGoogle Scholar |
Kondoh, M. (2003). Foraging adaptation and the relationship betwenn food-web complexity and stability. Ecology 299, 1388–1391.
| 1:CAS:528:DC%2BD3sXhsFWrs7w%3D&md5=bbd3cadfb0807619ffcf39b4dc2baa6fCAS |
Lodge, D. M., Kershner, M. W., Aloi, J. E., and Covich, A. P. (1994). Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75, 1265–1281.
| Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web.Crossref | GoogleScholarGoogle Scholar |
Lopretto, E., and Tell, G. (1995). ‘Ecosistemas de Aguas Continentales. Metodologías para su Estudio.’ (Ediciones Sur: La Plata., Argentina)
Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12, 343–346.
| Determination of chlorophyll and phaeopigments: spectrophotometric equations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXovFOqsQ%3D%3D&md5=e9b3e4343b69298988955072f9099586CAS |
Magurran, A. (1988). ‘Ecological Diversity and its Measurement’, 1st edn. (Chapman and Hall: London.)
Manly, B. F. J. (2007). ‘Randomization, Bootstrap and Monte Carlo Methods in Biology’, 3rd edn (Chapman and Hall/CRC: Boca Raton, FL.)
Mantel, K. S., Salas, M., and Dudgeon, D. (2004). Foodweb structure in a tropical Asian forest stream. Journal of the North American Benthological Society 23, 728–755.
| Foodweb structure in a tropical Asian forest stream.Crossref | GoogleScholarGoogle Scholar |
Marchese, M., and Ezcurra de Drago, I. (1992). Benthos of the lotic environments in the middle Paraná River system: transverse zonation. Hydrobiologia 237, 1–13.
| Benthos of the lotic environments in the middle Paraná River system: transverse zonation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmtl2hs70%3D&md5=865539146c8dbc9d32a7b184711d60feCAS |
Marchese, M., Wantzen, K. M., and Ezcurra de Drago, I. (2005). Benthic invertebrate assemblages and species diversity patterns of the Upper Paraguay River. River Research and Applications 21, 485–499.
| Benthic invertebrate assemblages and species diversity patterns of the Upper Paraguay River.Crossref | GoogleScholarGoogle Scholar |
Marchese, M. R., Saigo, M., Zilli, F. L., Capello, S., Devercelli, M., Montalto, L., Paporello, G., and Watzen, K. M. (2014). Food webs of the Paraná River floodplain: assessing basal sources using stable carbon and nitrogen isotopes. Limnologica 46, 22–30.
| Food webs of the Paraná River floodplain: assessing basal sources using stable carbon and nitrogen isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1Skur4%3D&md5=862426e929dc30627a58a706ed714ddfCAS |
Merritt, R. W., and Cummins, K. W. (1996). ‘An Introduction to the Aquatic Insects of North America’, 3rd edn. (Kendall/Hunt Publishing Company: Dubuque, IA, USA.)
Montalto, L. (2008). Dinámica espacio-temporal de asociaciones de invertebrados en un humedal marginal fluvial de la llanura del río Paraná medio. Ph.D. Thesis, Universidad de Buenos Aires, Argentina.
Montalto, L., Oliveros, O. B., Ezcurra de Drago, I., and Demonte, L. D. (1999). Peces del río Paraná medio predadores de una especie invasora: Limnoperna fortunei (Bivalva, Mytilidae). FABICIB 3, 85–101.
Montoya, J. M., and Sole, R. V. (2003). Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622.
| Topological properties of food webs: from real data to community assembly models.Crossref | GoogleScholarGoogle Scholar |
Neiff, J. J. (1990). Ideas para la interpretación ecológica del Paraná. Interciencia 15, 424–441.
Neiff, J. J., and Poi de Neiff, A. (1990). Litterfall, leaf decomposition and litter colonization of Tessaria integrifolia (Compositae) in the Parana River floodplain. Hydrobiologia 203, 45–52.
| Litterfall, leaf decomposition and litter colonization of Tessaria integrifolia (Compositae) in the Parana River floodplain.Crossref | GoogleScholarGoogle Scholar |
Neiff, J. J., Casco, S., and Poi de Neiff, A. S. (2008). Response of Eichhornia crassipes floating meadows to the water level fluctuations in two lakes with different connectivity in the Paraná River floodplain. Revue d’Hydrobiologie Tropicale 56, 613–623.
Ohman, M. D. (1988). Behavioral responses of zooplankton to predation. Bulletin of Marine Science 43, 530–550.
Oliveros, O. B., and Rossi, L. M. (1991). Ecología trófica de Hoplias malabaricus malabaricus (Pisces, Erythrinidae). Revista de la Asociacion de Ciencias Naturales del Litoral 22, 55–68.
Paggi, J. C. (1995). Crustacea: Cladocera. In ‘Ecosistemas de Aguas Continentales. Metodologías para su Estudio’. (Eds E. C. Lopretto, and G. Tell.) pp. 909–951. (Ediciones Sur: La Plata. Argentina)
Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure. Journal of Animal Ecology 49, 666–685.
| Food webs: linkage, interaction strength and community infrastructure.Crossref | GoogleScholarGoogle Scholar |
Pimm, S. L. (1982). ‘Food Webs’, 1st edn. (Chapman and Hall: London.)
Pimm, S. L., Lawton, J. H., and Cohen, J. E. (1991). Food web patterns and their consequences. Nature 350, 669–674.
| Food web patterns and their consequences.Crossref | GoogleScholarGoogle Scholar |
Poi de Neiff, A. (2003). Macroinvertebrates living on Eicchornia azurea Kunth in the Paraguay River. Acta Limnologica Brasiliensia 15, 55–63.
Poi de Neiff, A., and Carignan, R. (1997). Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain. Hydrobiologia 345, 185–196.
| Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain.Crossref | GoogleScholarGoogle Scholar |
Poi de Neiff, A., and Neiff, J. J. (2006). Riqueza de especies y similaridad de los invertebrados que viven en plantas flotantes de la planicie de inundación del río Paraná. Interciencia 31, 220–225.
Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food-web theory. American Naturalist 138, 123–155.
| Complex trophic interactions in deserts: an empirical critique of food-web theory.Crossref | GoogleScholarGoogle Scholar |
Polis, G. A., Myers, C. A., and Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology Evolution and Systematics 20, 297–330.
| The ecology and evolution of intraguild predation: potential competitors that eat each other.Crossref | GoogleScholarGoogle Scholar |
Pringle, C. M., and Hamazaki, T. (1998). The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects. Ecology 79, 269–280.
| The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects.Crossref | GoogleScholarGoogle Scholar |
Pringle, C. M., Blake, G. A., Covich, A. P., Buzby, K. M., and Finley, A. (1993). Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia 93, 1–11.
| Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass.Crossref | GoogleScholarGoogle Scholar |
Rawcliffe, R., Sayer, C. D., Woodward, G., Grey, J., Davidson, T. A., and Jones, J. I. (2010). Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs. Freshwater Biology 55, 600–613.
| Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs.Crossref | GoogleScholarGoogle Scholar |
Rossi, L., Cordiviola, E., and Parma, J. (2007). Fishes. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi, and M. J. Parma.) pp. 305–325. (Springer: Berlin.)
Ruetz, C. R., Newman, R. M., and Vondracek, B. (2002). Top-down control in a detritus-based food web: fish, shredders, and leaf breakdown. Oecologia 132, 307–315.
| Top-down control in a detritus-based food web: fish, shredders, and leaf breakdown.Crossref | GoogleScholarGoogle Scholar |
Thomaz, S. M., and Cunha, E. R. (2010). The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnologica Brasiliensia 22, 218–236.
| The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity.Crossref | GoogleScholarGoogle Scholar |
Thomaz, S. M., Bini, M. L. M., and Pagioro, T. A. (2004). Métodos em limnologia: macrófitas aquáticas. In ‘Amostragem em Limnologia’. (Eds C. Bicudo and D. C. Bicudo.) pp. 193–212. (RIMA: São Carlos, Brazil.)
Thomaz, S. M., Bini, M. L. M., and Bonzelli, R. L. (2007). Floods increase similarity among aquatic habitats in river–floodplain system. Hydrobiologia 579, 1–13.
| Floods increase similarity among aquatic habitats in river–floodplain system.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. M., and Townsend, C. R. (1999). The effect of seasonal variation on the community structure and food-web attributes of two streams: implications for food web science. Oikos 87, 75–88.
| The effect of seasonal variation on the community structure and food-web attributes of two streams: implications for food web science.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. M., and Townsend, C. R. (2005). Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos 108, 137–148.
| Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. M., Dunne, J. A., and Woodward, G. (2012). Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology 57, 1329–1341.
| Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics.Crossref | GoogleScholarGoogle Scholar |
Thorp, J. H., and Delong, M. D. (2002). Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550.
| Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers.Crossref | GoogleScholarGoogle Scholar |
Titelman, J. (2001). Swimming and escape behavior of copepod nauplii: implications for predator-prey interactions among copepods. Marine Ecology Progress Series 213, 203–213.
| Swimming and escape behavior of copepod nauplii: implications for predator-prey interactions among copepods.Crossref | GoogleScholarGoogle Scholar |
Torres, M. V., Giri, F., and Williner, V. (2012). Size selective predation in an invasive bivalve, Limnoperna fortunei (Mytilidae), by a freshwater crab, Zilchiopsis collastinensis (Trichodactylidae). Journal of Crustacean Biology 32, 698–710.
| Size selective predation in an invasive bivalve, Limnoperna fortunei (Mytilidae), by a freshwater crab, Zilchiopsis collastinensis (Trichodactylidae).Crossref | GoogleScholarGoogle Scholar |
Ulrich, W., Almeida-Neto, M., and Gotelli, N. J. (2009). A consumer’s guide to nestedness analysis. Oikos 118, 3–17.
| A consumer’s guide to nestedness analysis.Crossref | GoogleScholarGoogle Scholar |
Vadas, R. L. (1990). The importance of omnivory and predator regulation of prey in freshwater fish assemblages of North America. Environmental Biology of Fishes 27, 285–302.
| The importance of omnivory and predator regulation of prey in freshwater fish assemblages of North America.Crossref | GoogleScholarGoogle Scholar |
Warren, P. H. (1989). Spatial and temporal variation in the structure of a freshwater food web. Oikos 55, 299–311.
| Spatial and temporal variation in the structure of a freshwater food web.Crossref | GoogleScholarGoogle Scholar |
Williner, V., and Collins, P. A. (2013). Feeding ecology of the freshwater crab Trichodactylus borellianus (Decapoda: Trichodactylidae) in the floodplain of the Paraná River, southern South America. Latin American Journal of Aquatic Research 41, 781–792.
| Feeding ecology of the freshwater crab Trichodactylus borellianus (Decapoda: Trichodactylidae) in the floodplain of the Paraná River, southern South America.Crossref | GoogleScholarGoogle Scholar |
Winemiller, K. O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60, 331–367.
| Spatial and temporal variation in tropical fish trophic networks.Crossref | GoogleScholarGoogle Scholar |
Winemiller, K. O. (1996). Factors driving temporal and spatial variation in aquatic floodplain food webs. In ‘Food Webs: Integration of Patterns and Dynamics’. (Eds G. A. Polis and K. O. Winemiller.) pp. 298–313. (Chapman and Hall: New York.)
Winemiller, K. O. (2007). Interplay between scale, resolution, life history and food web properties. In ‘From Energetics to Ecosystems: the Dynamics and Structure of Ecological Systems’. (Eds K. McCann, D. Noakes, and N. Rooney.) pp. 101–126. (Springer: Berlin.)
Winemiller, K. O., and Jepsen, D. B. (1998). Effects of seasonality and fish movement on tropical river food webs. Journal of Fish Biology 53, 267–296.
| Effects of seasonality and fish movement on tropical river food webs.Crossref | GoogleScholarGoogle Scholar |
Zalocar de Domitrovic, Y., Devercelli, M., and García de Emiliani, M. O. (2007). Phytoplankton. In ‘The Middle Paraná River: Limnology of a Subtropical Wetland’. (Eds M. H. Iriondo, J. C. Paggi, and M. J. Parma.) pp. 175–203. (Springer: Berlin.)
Zilli, F. L., Montalto, L., and Marchese, M. R. (2008). Benthic invertebrates assemblages and functional feeding groups in the Paraná River floodplain (Argentina). Limnologica 38, 159–171.
| Benthic invertebrates assemblages and functional feeding groups in the Paraná River floodplain (Argentina).Crossref | GoogleScholarGoogle Scholar |