Primary productivity induced by iron and nitrogen in the Tasman Sea: an overview of the PINTS expedition
C. S. Hassler A B C I , K. R. Ridgway B , A. R. Bowie D E , E. C. V. Butler B H , L. A. Clementson B , M. A. Doblin A , D. M. Davies D , C. Law F , P. J. Ralph A , P. van der Merwe D , R. Watson B and M. J. Ellwood GA Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
B CSIRO Wealth from Oceans Research Flagship, and CSIRO Marine and Atmospheric Research, Castray Esplanade, Hobart, Tas. 7000, Australia.
C Institute F.-A. Forel, University of Geneva, 10 rte de Suisse, 1290 Versoix, Switzerland.
D Antarctic Climate & Ecosystems Co-operative Research Centre, University of Tasmania, Private Bag 80, Hobart, Tas. 7001, Australia.
E Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tas. 7001, Australia.
F National Institute of Water and Atmospheric Research (NIWA), 301 Evans Bay Parade, Greta Point, PO Box 14-901, Kilbirnie, Wellington 6022, New Zealand.
G Research School of Earth Sciences, Building 61, Mills Road, Australian National University, Canberra, ACT 0200, Australia.
H Present address: Australian Institute of Marine Science, Arafura Timor Research Facility, PO Box 41775, Casuarina, NT 0811, Australia.
I Corresponding author: Christel.Hassler@unige.ch
Marine and Freshwater Research 65(6) 517-537 https://doi.org/10.1071/MF13137
Submitted: 2 June 2013 Accepted: 1 October 2013 Published: 7 May 2014
Abstract
The Tasman Sea and the adjacent subantarctic zone (SAZ) are economically important regions, where the parameters controlling the phytoplankton community composition and carbon fixation are not yet fully resolved. Contrasting nutrient distributions, as well as phytoplankton biomass, biodiversity and productivity were observed between the North Tasman Sea and the SAZ. In situ photosynthetic efficiency (FV/FM), dissolved and particulate nutrients, iron biological uptake, and nitrogen and carbon fixation were used to determine the factor-limiting phytoplankton growth and productivity in the North Tasman Sea and the SAZ. Highly productive cyanobacteria dominated the North Tasman Sea. High atmospheric nitrogen fixation and low nitrate dissolved concentrations indicated that non-diazotroph phytoplankton are nitrogen limited. Deck-board incubations also suggested that, at depth, iron could limit eukaryotes, but not cyanobacteria in that region. In the SAZ, the phytoplankton community was dominated by a bloom of haptophytes. The low productivity in the SAZ was mainly explained by light limitation, but nitrogen, silicic acid as well as iron were all depleted to the extent that they could become co-limiting. This study illustrates the challenge associated with identification of the limiting nutrient, as it varied between phytoplankton groups, depths and sites.
Additional keywords: algae, bioavailability, limitation, nutrients, subantarctic zone.
References
Arrigo, K. R., Robinson, D. H., Worthen, D. L., Dunbar, R. B., DiTullio, G. R., VanWoert, M., and Lizotte, M. P. (1999). Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283, 365–367.| Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1antg%3D%3D&md5=d8618c50fc7d29411b14707c8acfcadfCAS | 9888847PubMed |
Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T., Conway, T., and Francey, R. J. (2000). Global carbon sinks and their variability inferred from atmospheric O2 and C. Science 287, 2467–2470.
| Global carbon sinks and their variability inferred from atmospheric O2 and C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlKnsLo%3D&md5=3fa45793eff3542d036e3096d89b64a5CAS | 10741962PubMed |
Behrenfeld, M. J., and Falkowski, P. G. (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42, 1–20.
| Photosynthetic rates derived from satellite-based chlorophyll concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVeqtr4%3D&md5=5ba428e689ecc02ab6375cdf364f5467CAS |
Behrenfeld, M. J., and Milligan, A. J. (2013). Photophysiological expression of iron stress in Phytoplankton. Annual Review of Marine Science 5, 217–246.
| Photophysiological expression of iron stress in Phytoplankton.Crossref | GoogleScholarGoogle Scholar | 22881354PubMed |
Behrenfeld, M. J., Worthington, K., Sherrell, R. M., Chavez, F. P., Strutton, P., McPhaden, M., and Shea, D. M. (2006). Controls on Pacific Ocean productivity revealed through nutrient stress diagnostics. Nature 442, 1025–1028.
| Controls on Pacific Ocean productivity revealed through nutrient stress diagnostics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVyhur8%3D&md5=8bb26fd3719da22930b612e60fcc4c26CAS | 16943835PubMed |
Bertilsson, S., Berglund, O., Karl, D. M., and Chisholm, S. W. (2003). Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology and Oceanography 48, 1721–1731.
| Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFCrurY%3D&md5=e07f28d8794562ade13f7359760173bbCAS |
Bishop, J. K., Schupack, B. D., Sherrell, R. M., and Conte, M. (1985). A multiple-unit large-volume in-situ filtration system for sampling oceanic particulate matter in mesoscale environments Advances in Chemistry Series 209, 155–175.
| A multiple-unit large-volume in-situ filtration system for sampling oceanic particulate matter in mesoscale environmentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXitVyqsrY%3D&md5=dae08af231b7d1d12f8306aed2d62242CAS |
Bowen, M., Wilkin, J. L., and Emery, W. J. (2005). Variability and forcing of the East Australian Current Journal of Geophysical Research 110, C03019.
| Variability and forcing of the East Australian CurrentCrossref | GoogleScholarGoogle Scholar |
Bowie, A. R., Lannuzel, D., Remenyi, T. A., Wagener, T., Lam, P. J., Boyd, P. W., Guieu, C., Townsend, A. T., and Trull, T. W. (2009). Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply. Global Biogeochemical Cycles 23, GB4034.
| Biogeochemical iron budgets of the Southern Ocean south of Australia: decoupling of iron and nutrient cycles in the subantarctic zone by the summertime supply.Crossref | GoogleScholarGoogle Scholar |
Bowie, A. R., Townsend, A. T., Lannuzel, D., Remenyi, T., and van der Merwe, P. (2010). Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector ICP-MS. Analytica Chimica Acta 676, 15–27.
| Modern sampling and analytical methods for the determination of trace elements in marine particulate material using magnetic sector ICP-MS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hurfF&md5=db1020f6484fc5235528d1d7a1fa026eCAS | 20800737PubMed |
Bowie, A. R., Griffiths, F. B., Dehairs, F., and Trull, T. W. (2011). Oceanography of the subantarctic and polar frontal zones south of Australia during summer: setting for the SAZ-Sense study. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2059–2070.
| Oceanography of the subantarctic and polar frontal zones south of Australia during summer: setting for the SAZ-Sense study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbnI&md5=61da77b09ce34be9d366591d91ad3e8fCAS |
Boyd, P. W., and Ellwood, M. (2010). The biogeochemical cycle of iron in the ocean. Nature Geoscience 3, 675–682.
| The biogeochemical cycle of iron in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajtrbO&md5=2a2e483870478a6856038d9d5517be5bCAS |
Boyd, P. W., McTainsh, G., Sherlock, V., Richardson, K., Nichol, S., Ellwood, M., and Frew, R. (2004). Episodic enhancement of phytoplankton stocks in New Zealand subantarctic waters: contribution of atmospheric and oceanic iron supply. Global Biogeochemical Cycles 18, GB1029.
| Episodic enhancement of phytoplankton stocks in New Zealand subantarctic waters: contribution of atmospheric and oceanic iron supply.Crossref | GoogleScholarGoogle Scholar |
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. J. (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617.
| Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyisLk%3D&md5=b53edb3379550cef6082a149ad7e59cdCAS | 17272712PubMed |
Butler, E. C. V., O’Sullivan, J. E., Watson, R. J., Bowie, A. R., Remenyi, T. A., and Lannuzel, D. (2013). Trace metals Cd, Co, Cu, Ni, and Zn in waters of the subantarctic and Polar Frontal Zones south of Tasmania during the ‘SAZ-Sense’ project. Marine Chemistry 148, 63–76.
| Trace metals Cd, Co, Cu, Ni, and Zn in waters of the subantarctic and Polar Frontal Zones south of Tasmania during the ‘SAZ-Sense’ project.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlansbk%3D&md5=2ad79723ad662761726695a13ee6f6c0CAS |
Chisholm, S. W. (2000). Stirring times in the Southern Ocean. Nature 407, 685–687.
| Stirring times in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFSitL8%3D&md5=0abd75cd823a6c951a45539a2fe55efeCAS | 11048702PubMed |
Cropp, R. A., Gabric, A. J., Levasseur, M., McTainsh, G. H., Bowie, A., Hassler, C. S., Law, C. S., McGowan, H., Tindale, N., and Viscarra Rossel, R. (2013). The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent. Journal of Marine Systems 117–118, 43–52.
| The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian continent.Crossref | GoogleScholarGoogle Scholar |
Cullen, J. T., and Sherrell, R. M. (1999). Techniques for determination of trace metals in small samples of size-fractionated particulate matter: phytoplankton metals off central California. Marine Chemistry 67, 233–247.
| Techniques for determination of trace metals in small samples of size-fractionated particulate matter: phytoplankton metals off central California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVCqtbk%3D&md5=6460cac51953f2aa49d62d38cdea634bCAS |
Cullen, J. T., and Sherrell, R. M. (2005). Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages. Limnology and Oceanography 50, 1193–1204.
| Effects of dissolved carbon dioxide, zinc, and manganese on the cadmium to phosphorus ratio in natural phytoplankton assemblages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvVWqsrw%3D&md5=4b5fe0376060a2cb307fdd3c3347ff01CAS |
Cullen, J. T., Chase, Z., Coale, K. H., Fitzwater, S. E., and Sherrell, R. M. (2003). Effect of iron limitation on the cadmium to phosphorous ratio of natural phytoplankton assemblages from the Southern Ocean. Limnology and Oceanography 48, 1079–1087.
| Effect of iron limitation on the cadmium to phosphorous ratio of natural phytoplankton assemblages from the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFOlt7Y%3D&md5=b6ade368924e4bef1b8b0255d784af02CAS |
Cutter, G., Andersson, P., Codispoti, L., Croot, P., Fracois, R., Lohan, M., Obata, H., and van der Loeff, M. R. (2010). Sampling and sample handling protocols for GEOTRACES Cruises. Available at www.geotraces.org/libraries/documents/Int ercalibration/Cookbook.pdf [Verified 14 November 2013
De Baar, H. J. W., van Leeuwe, M. A., Scharek, R., Goeyens, L., Bakker, K. M. J., and Fritsche, P. (1997). Nutrient anomalies in Fragilariopsis kerguelensis blooms, iron deficiency and the nitrate/phosphate ratio (A. C. Redfield) of the Antarctic Ocean. Deep-sea Research Part II: Topical Studies in Oceanography 44, 229–260.
| Nutrient anomalies in Fragilariopsis kerguelensis blooms, iron deficiency and the nitrate/phosphate ratio (A. C. Redfield) of the Antarctic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitFaisbs%3D&md5=24a90840de36e6605b7561bda778a711CAS |
de Jong, J. T. M., den Das, J., Bathmann, U., Stoll, M. H. C., Kattner, G., Nolting, R. F., and de Baar, H. J. W. (1998). Dissolved iron at sub-nanomolar levels in the Southern Ocean as determined by shipboard analysis. Analytica Chimica Acta 377, 113–124.
| Dissolved iron at sub-nanomolar levels in the Southern Ocean as determined by shipboard analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXns1KmtbY%3D&md5=39863a80f1d760f30e2f4eb8d429a0eeCAS |
de Salas, M. F., Eriksen, R., Davidson, A. T., and Wright, S. W. (2011). Protistan communities in the Australian sector of the Sub-Antarctic zone during SAZ-Sense. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2135–2149.
| Protistan communities in the Australian sector of the Sub-Antarctic zone during SAZ-Sense.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbbM&md5=ef2339d2213911d22b6e7db468b28af9CAS |
Doblin, M. A., Ralph, P. J., Petrou, K. L., Shelly, K., Westwood, K., van den Enden, R., Wright, S., and Griffiths, B. (2011). Diel variation of chlorophyll-a fluorescence, phytoplankton pigments and productivity in the Sub-Antarctic and Polar Front Zones south of Tasmania, Australia. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2189–2199.
| Diel variation of chlorophyll-a fluorescence, phytoplankton pigments and productivity in the Sub-Antarctic and Polar Front Zones south of Tasmania, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbbI&md5=b8f9b6872ef1f6dfce695ef2b6d0f301CAS |
Ellwood, M. J. (2008a). Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between 40–52°S; 155–160°E. Marine Chemistry 112, 107–117.
| Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the Subantarctic Zone between 40–52°S; 155–160°E.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOnurnE&md5=03f2bdce0d9752a3f943d1c18bd95772CAS |
Ellwood, M. J., Boyd, P. W., and Sutton, P. (2008b). Winter-time dissolved iron and nutrient distributions in the subantarctic zone from 40–52°S;155–160°E. Geophysical Research Letters 35, L11604.
| Winter-time dissolved iron and nutrient distributions in the subantarctic zone from 40–52°S;155–160°E.Crossref | GoogleScholarGoogle Scholar |
Ellwood, M. J., Law, C. S., Hall, J., Woodward, E. M. S., Strzepek, R., Kuparinen, J., Thompson, K., Pickmere, S., Sutton, P., and Boyd, P. W. (2013). Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea. Deep-sea Research Part I: Oceanographic Research Papers 72, 102–120.
| Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCmu7w%3D&md5=388a93cd543b92be6c83baabb8a66ae5CAS |
Finkel, Z. V., Quigg, A. S., Chiampi, R. K., Schofield, O. E., and Falkowski, P. G. (2007). Phylogenetic diversity in cadmium: phosphorus ratio regulation by marine phytoplankton. Limnology and Oceanography 52, 1131–1138.
| Phylogenetic diversity in cadmium: phosphorus ratio regulation by marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1ymtLg%3D&md5=5b3bf07f1e2627335cf9693ed209d2d1CAS |
Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., and Raven, J. A. (2010). Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32, 119–137.
| Phytoplankton in a changing world: cell size and elemental stoichiometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFarsbrK&md5=f830134b30242469db4358edd56eb603CAS |
Gabric, A. J., Cropp, R., Ayers, G. P., McTainsh, G., and Braddock, R. (2002). Coupling between cycles of phytoplankton biomass and aerosol optical depth as derived from SeaWiFS time series in the Subantarctic Southern Ocean. Geophysical Research Letters 29, .
| Coupling between cycles of phytoplankton biomass and aerosol optical depth as derived from SeaWiFS time series in the Subantarctic Southern Ocean.Crossref | GoogleScholarGoogle Scholar |
Gault-Ringold, M., Adu, T., Stirling, C. H., Frew, R. D., and Hunter, K. A. (2012). Anomalous biogeochemical behavior of cadmium in subantarctic surface waters: mechanistic constraints from cadmium isotopes. Earth and Planetary Science Letters 341–344, 94–103.
| Anomalous biogeochemical behavior of cadmium in subantarctic surface waters: mechanistic constraints from cadmium isotopes.Crossref | GoogleScholarGoogle Scholar |
GEOTRACES. (2006). An international study of the marine biogeochemical cycles of trace elements and their isotopes. (Scientific Committee on Oceanic Research: Baltimore, MD, USA.) Available at http://www.geotraces.org/libraries/documents/Science_plan.pdf [Verified 24 October 2013].
Godfrey, J. S., Cresswell, G. R., Golding, T. J., Pearce, A. F., and Boyd, R. (1980). The separation of the East Australian Current Journal of Physical Oceanography 10, 430–440.
| The separation of the East Australian CurrentCrossref | GoogleScholarGoogle Scholar |
Hassler, C. S., and Schoemann, V. (2009a). Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean. Biogeosciences 6, 2281–2296.
| Bioavailability of organically bound Fe to model phytoplankton of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVCqsg%3D%3D&md5=ad3374cc23c8b5090b0c0fef024579f2CAS |
Hassler, C. S., and Schoemann, V. (2009b). Discriminating between intra- and extracellular metals using chemical extractions-the case of iron. Limnology and Oceanography: Methods 7, 479–489.
| Discriminating between intra- and extracellular metals using chemical extractions-the case of iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WjtrbI&md5=239c403a2aefba5e7ad584db4db57c78CAS |
Hassler, C. S., Sinoir, M., Clementson, L. A., and Butler, E. C. V. (2012a). Exploring the link between micro-nutrients and phytoplankton in the Southern Ocean during the 2007 austral summer. Frontiers in Microbiology 3, article 202.
| Exploring the link between micro-nutrients and phytoplankton in the Southern Ocean during the 2007 austral summer.Crossref | GoogleScholarGoogle Scholar |
Hassler, C. S., Schoemann, V., Boye, M., Tagliabue, A., Rozmarynowycz, M., and McKay, R. M. L. (2012b). Iron Bioavailability in the Southern Ocean. In ‘Oceanography and Marine Biology: An annual review. Vol. 50’. (Eds R. N. Gibson, R. J. A. Atkinson, J. D. M. Gordon and R. N. Hughes). pp. 1–64. (CRC Press: New York.)
Hesse, P. P. (1994). The record of continental dust from Australia in Tasman Sea Sediments. Quaternary Science Reviews 13, 257–272.
| The record of continental dust from Australia in Tasman Sea Sediments.Crossref | GoogleScholarGoogle Scholar |
Hesse, P. P. (1997). Mineral magnetic ‘tracing’ of aeolian dust in southwest Pacific sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 131, 327–353.
| Mineral magnetic ‘tracing’ of aeolian dust in southwest Pacific sediments.Crossref | GoogleScholarGoogle Scholar |
Hesse, P. P., and McTainsh, G. H. (2003). Australian dust deposits: modern processes and the Quaternary record. Quaternary Science Reviews 22, 2007–2035.
| Australian dust deposits: modern processes and the Quaternary record.Crossref | GoogleScholarGoogle Scholar |
Ho, T. Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K., Falkowski, P. G., and Morel, F. M. M. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology 39, 1145–1159.
| The elemental composition of some marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVartg%3D%3D&md5=c6e38e208afbfb6a17e994ad882f3003CAS |
Hobday, A, Poloczanska, E. S., and Matear, R. J. (2008). Implications of climate change for Australian fisheries and acquaculture: A preliminary assessment. Report to the Australian Greenhouse Office. (Publisher: Department of Climate Change, Canberra)
Hutchins, D. A., and Bruland, K. W. (1998). Iron-limited diatom growth and Si : N uptake ratios in a coastal upwelling regime. Nature 393, 561–564.
| Iron-limited diatom growth and Si : N uptake ratios in a coastal upwelling regime.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvV2ktr8%3D&md5=36c825d788ac0787119b8e782d8239b6CAS |
IPCC 2007. ‘The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M.C. Marquis, K. Averyt, M. Tignor and H.L. Miller.) (Intergovernmental Panel on Climate Change: Cambridge,New York.)
Jacquet, S. H. M., Lam, P. J., Trull, T. W., and Dehairs, F. (2011). Carbon export production in the Sub-Antarctic zone and Polar Front Zone south of Tasmania. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2277–2292.
| Carbon export production in the Sub-Antarctic zone and Polar Front Zone south of Tasmania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbfN&md5=4ac9298c19bac4f0f303a220c18e4517CAS |
Jeffrey, S. W., and Wright, S. W. (2006). Photosynthetic pigments in marine microalgae: insights from cultures and the sea. In ‘Algal Cultures, Analogues of Blooms and Applications’. (Ed. D. V. Subba Rao.) pp. 33–90. (Science Publishers : Enfield, NH.)
Jickells, T. D., An, Z. S., Anderson, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71.
| Global iron connections between desert dust, ocean biogeochemistry, and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVaqs7w%3D&md5=f0b534ed773a0129f65819f41ccb87e6CAS | 15802595PubMed |
Johnson, K. M., Dickson, A. G., Eischeid, G., Goyet, C., Guenther, P., Key, R. M., Millero, F. J., Purkerson, D., Sabine, C. L., Schottle, R. G., Wallace, D. W. R., Wilke, R. J., and Winn, C. D. (1998). Coulometric total carbon dioxide analysis for marine studies: assessment of the quality of total inorganic carbon measurements made during the US Indian Ocean CO2 Survey 1994–1996. Marine Chemistry 63, 21–37.
| Coulometric total carbon dioxide analysis for marine studies: assessment of the quality of total inorganic carbon measurements made during the US Indian Ocean CO2 Survey 1994–1996.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslKitb4%3D&md5=b6ca28ee12a4ea4cf29066420bce9dbdCAS |
Johnson, K. S., Boyle, E., Bruland, K., Coale, K., Measures, C., Moffett, J., Aguilar-Islas, A., Barbeau, K., Bergquist, B., Bowie, A., Buck, K., Cai, Y., Chase, Z., Cullen, J., Doi, T., Elrod, V., Fitzwater, S., Gordon, M., King, A., Laan, P., Laglera-Baquer, L., Landing, W., Lohan, M., Mendez, J., Milne, A., Obata, H., Ossiander, L., Plant, J., Sarthou, G., Sedwick, P., Smith, G. J., Sohst, B., Tanner, S., Van den Berg, S., and Wu, J. (2007). The SAFe Iron Intercomparison Cruise: An international collaboration to develop dissolved iron in seawater standards. Eos, Transactions, American Geophysical Union 88, 131–132.
| The SAFe Iron Intercomparison Cruise: An international collaboration to develop dissolved iron in seawater standards.Crossref | GoogleScholarGoogle Scholar |
Karl, D. M. (2000). Phosphorus, the staff of life. Nature 406, 31–33.
| Phosphorus, the staff of life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1OktLY%3D&md5=3dfa81f858e185dc8d9d407d763cee99CAS | 10894527PubMed |
King, P., Kennedy, H., Newton, P., Jickells, T., Timothy Brand, T., Calvert, S., Cauwet, G., Etcheber, H., Head, B., Khripounoff, A., Manighetti, B., and Miquel, J. C. (1998). Analysis of total and organic carbon and total nitrogen in settling oceanic particles and marine sediment: an interlaboratory comparison. Marine Chemistry 60, 203–216.
| Analysis of total and organic carbon and total nitrogen in settling oceanic particles and marine sediment: an interlaboratory comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVWgsL8%3D&md5=7e867870d53190710e038ab1c8795d91CAS |
Kustka, A. B., Sanudo-Wilhelmy, S. A., Carpenter, E. J., Capone, D., Burns, J., and Sunda, W. G. (2003). Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): Comparison with nitrogen fixation rates and iron: carbon ratios of field populations. Limnology and Oceanography 48, 1869–1884.
| Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS 101): Comparison with nitrogen fixation rates and iron: carbon ratios of field populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFCqsr4%3D&md5=eba041676c83a9f457b5149dd74d1b49CAS |
Lannuzel, D., Remenyi, T., Lam, P. J., Townsend, A., Ibisanmi, E., Butler, E., Wagener, T., Schoemann, V., and Bowie, A. R. (2011). Distributions of dissolved and particulate iron in the Sub-Antarctic and Polar Frontal Southern Ocean (Australian sector). Deep-sea Research Part II: Topical Studies in Oceanography 58, 2094–2112.
| Distributions of dissolved and particulate iron in the Sub-Antarctic and Polar Frontal Southern Ocean (Australian sector).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbnL&md5=97db553cd5a54aed4588fddd5eb88cf0CAS |
Law, C. S., Ellwood, M., Woodward, E. M. S., Marriner, A., Bury, S., and Safi, K. (2011). Response of surface nutrient inventories and nitrogen fixation to a tropical cyclone in the South-West Pacific. Limnology and Oceanography 56, 1372–1385.
| Response of surface nutrient inventories and nitrogen fixation to a tropical cyclone in the South-West Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVCrurrI&md5=62f3a0fbeb86c9a57a26e082d5975a36CAS |
Leblanc, K., Hare, C. E., Boyd, P. W., Bruland, K. W., Sohst, B., Pickmere, S., Lohan, M. C., Buck, K., Ellwood, M., and Hutchins, D. A. (2005). Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas. Deep-sea Research Part I: Oceanographic Research Papers 52, 1842–1864.
| Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1aqu7c%3D&md5=0d33540f54719db9e33ada6196ce6b40CAS |
Lewis, M. R., and Smith, J. C. (1983). A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Marine Ecology Progress Series 13, 99–102.
| A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltFyktLo%3D&md5=e3254f92f894e4dbe95f49fb40ae3f93CAS |
Marie, D., Partensky, F., Jacquet, S., and Vaulot, D. (1997). Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green. Applied and Environmental Microbiology 63, 186–193.
| 1:CAS:528:DyaK2sXhs1Oiug%3D%3D&md5=4827d8a94ebd6de9adf30055fe748f1aCAS | 16535483PubMed |
Martin, J. H., Gordon, R. M., and Fitzwater, S. E. (1990). Fe in Antarctic waters. Nature 345, 156–158.
| Fe in Antarctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVGrtb0%3D&md5=26dc0f382a3fa34497f54a70c191cc44CAS |
Mohr, W., Großkopf, T., Wallace, D. W. R., and LaRoche, J. (2010). Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE 5, e12583.
| Methodological underestimation of oceanic nitrogen fixation rates.Crossref | GoogleScholarGoogle Scholar | 20838446PubMed |
Mongin, M., Matear, R., and Chamberlain, M. (2011). Seasonal and spatial variability of remotely sensed chlorophyll and physical fields in the SAZ-Sense region. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2082–2093.
| Seasonal and spatial variability of remotely sensed chlorophyll and physical fields in the SAZ-Sense region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbnK&md5=98dd6560d6b4a68a02da243c07d04ba2CAS |
Montoya, J. P., Voss, M., Kahler, P., and Capone, D. G. (1996). A simple, high-precision, high-sensitivity tracer assay for N-2 fixation. Applied and Environmental Microbiology 62, 986–993.
| 1:CAS:528:DyaK28XhsVWqsb0%3D&md5=23d86c8cbaa743391891833c5060d87bCAS | 16535283PubMed |
Moore, J. K., and Abbott, M. R. (2000). Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. Journal of Geophysical Research 105, 28709–28722.
| Phytoplankton chlorophyll distributions and primary production in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvV2qsQ%3D%3D&md5=a34e5e3e007a1e50e9cf8429941c1fc0CAS |
Moore, J. K., and Doney, S. C. (2007). Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation. Global Biogeochemical Cycles 21, GB2001.
| Iron availability limits the ocean nitrogen inventory stabilizing feedbacks between marine denitrification and nitrogen fixation.Crossref | GoogleScholarGoogle Scholar |
Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y. (2001). Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep-sea Research Part II: Topical Studies in Oceanography 49, 463–507.
| Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean.Crossref | GoogleScholarGoogle Scholar |
Moore, C. M., Mills, M. M., Achterberg, E. P., Geider, R. J., La Roche, J., Lucas, M. I., McDonagh, E. L., Pan, X., Poulton, A. J., Rijkenberg, M. J. A., Suggett, D. J., Ussher, S. J., and Woodward, E. M. S. (2009). Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geoscience 2, 867–871.
| Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyqsbrL&md5=2b7ec8c8fbb9dbe2ec268716dc164482CAS |
Morel, F. M. M., and Price, N. M. (2003). The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947.
| The biogeochemical cycles of trace metals in the oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsVyjsLk%3D&md5=b07f645733ae1b4de17836c953834f1fCAS |
Morrissey, J. C., and Bowler, C. (2012). Iron utilization in marine cyanobacteria and eukaryotic algae. Frontiers in Microbiology 3, article 43.
| Iron utilization in marine cyanobacteria and eukaryotic algae.Crossref | GoogleScholarGoogle Scholar |
Nilsson, C. S., and Cresswell, G. R. (1980). The formation and evolution of East Australian Current warm core eddies Progress in Oceanography 9, 133–183.
| The formation and evolution of East Australian Current warm core eddiesCrossref | GoogleScholarGoogle Scholar |
Nuester, J., Vogt, S., Newville, M., Kustka, A. B., and Twining, B. S. (2012). The unique biogeochemical signature of the marine diazotroph Trichodesmium. Frontiers in Microbiology 3, article 150.
| The unique biogeochemical signature of the marine diazotroph Trichodesmium.Crossref | GoogleScholarGoogle Scholar |
O’Sullivan, J. E., Watson, R. J., and Mackey, D. J. (1995). A guide to trace metal sampling in estuarine waters. In ‘Australian Marine Data Collection and Management Guidelines Workshop, 5–6 December 1995, CSIRO Marine Laboratories, Hobart, Tasmania’. (Australian Department of the Environment Sport and Territories: Canberra.)
O’Sullivan, J. E., Watson, R. J., and Butler, E. C. V. (2013). An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration. Talanta 115, 999–1010.
| An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlKrurvE&md5=0dbe81bc52de405eeccb893e6e70964dCAS | 24054694PubMed |
Obata, H., Karatani, H., and Nakayama, E. (1993). Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Analytical Chemistry 65, 1524–1528.
| Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitF2gsLc%3D&md5=2030b3a989b37591f05f0e1ab6c47d3aCAS |
Orsi, A. H., Whitworth , T. W., and Nowlin, W. D. (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current Deep-sea Research Part I: Oceanographic Research Papers 42, 641–673.
| On the meridional extent and fronts of the Antarctic Circumpolar CurrentCrossref | GoogleScholarGoogle Scholar |
Parekh, P., Follows, M. J., and Boyle, E. A. (2005). Decoupling of iron and phosphate in the global ocean. Global Biogeochemical Cycles 19, GB2020.
| Decoupling of iron and phosphate in the global ocean.Crossref | GoogleScholarGoogle Scholar |
Pearce, I., Davidson, A. T., Thomson, P., Wright, S. W., and van den Enden, R. (2011). Marine microbial ecology in the Sub-Antarctic Zone: rates of bacterial and phytoplankton growth and grazing by heterotrophic protists. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2248–2259.
| Marine microbial ecology in the Sub-Antarctic Zone: rates of bacterial and phytoplankton growth and grazing by heterotrophic protists.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbbF&md5=db3ece9be430974ef48cef32b53142b6CAS |
Petrou, K. L., Hassler, C. S., Doblin, M. A., Shelly, K., Schoemann, V., and Ralph, P. J. (2011). Interaction of iron and light on Southern Ocean phytoplankton. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2200–2211.
| Interaction of iron and light on Southern Ocean phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbbJ&md5=103abced5ca12611e1f70c58c0e2eef3CAS |
Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T. Y., Reinfelder, J. R., Schofield, O., Morel, F. M. M., and Falkowski, P. G. (2003). The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294.
| The evolutionary inheritance of elemental stoichiometry in marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlWns78%3D&md5=0f9ec1d15c7cdc89997ec68b4f87ed10CAS | 13679916PubMed |
Raven, J. A., Evans, M. C. W., and Korb, R. E. (1999). The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Research 60, 111–150.
| The role of trace metals in photosynthetic electron transport in O2-evolving organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt1Glu7c%3D&md5=f58febed2b269d9f31f1a6745dadfdd7CAS |
Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963). The influence of organisms on the composition of sea-water. In ‘The composition of seawater. Comparative and descriptive oceanography. The sea: ideas and observations on progress in the study of the seas. Vol. 2’. (Ed. M. N. Hill.) pp. 26–77. (Interscience: New York.)
Reynolds, S., and Navidad, A. (2012). ‘SS2010/01 - Role of iron and other micronutrients in controlling primary productivity in the Tasman Sea: bioavailability, biogeochemical cycling and sources.’ (CSIRO Marine national Facility, unpublished voyage hydrochemistry report, October 2012: Hobart, Tasmania.)
Ridgway, K. R. (2007). Seasonal circulation around Tasmania: An interface between eastern and western boundary dynamics. Journal of Geophysical Research 112, C10016.
| Seasonal circulation around Tasmania: An interface between eastern and western boundary dynamics.Crossref | GoogleScholarGoogle Scholar |
Ridgway, K. R., and Dunn, J. R. (2003). Mesoscale structure of the mean East Australian Current System and its relationship with topography Progress in Oceanography 56, 189–222.
| Mesoscale structure of the mean East Australian Current System and its relationship with topographyCrossref | GoogleScholarGoogle Scholar |
Ridgway, K. R., and Dunn, J. R. (2007). Observational evidence for a Southern Hemisphere oceanic ‘Supergyre’. Geophysical Research Letters 34, L13612.
| Observational evidence for a Southern Hemisphere oceanic ‘Supergyre’.Crossref | GoogleScholarGoogle Scholar |
Ridgway, K. R., Dunn, J. R., and Wilkin, J. L. (2002). Ocean interpolation by four-dimensional least squares -Application to the waters around Australia. Journal of Atmospheric and Oceanic Technology 19, 1357–1375.
| Ocean interpolation by four-dimensional least squares -Application to the waters around Australia.Crossref | GoogleScholarGoogle Scholar |
Ridgway, K. R., Coleman, R. C., Bailey, R. J., and Sutton, P. (2008). Decadal variability of East Australian Current transport inferred from repeated high-density XBT transects, a CTD survey and satellite altimetry Journal of Geophysical Research 113, C08039.
| Decadal variability of East Australian Current transport inferred from repeated high-density XBT transects, a CTD survey and satellite altimetryCrossref | GoogleScholarGoogle Scholar |
Saito, M. A., Bertrand, E. M., Dutkiewicz, S., Bulygin, V. V., Moran, D. M., Monteiro, F. M., Follows, M. J., Valois, F. W., and Waterbury, J. B. (2011). Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonia. Proceedings of the National Academy of Sciences of the United States of America 108, 2184–2189.
| Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFKqt70%3D&md5=b1b6264a3aec064c0fcfb038b4aef004CAS | 21248230PubMed |
Sarthou, G., Timmermans, K., Blain, S., and Tréguer, P. (2005). Growth physiology and fate of diatoms in the ocean: A review. Journal of Sea Research 53, 25–42.
| Growth physiology and fate of diatoms in the ocean: A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFSi&md5=e556411da270e14db6e5e260dfb58748CAS |
Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V., and Lancelot, C. (2005). Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. Journal of Sea Research 53, 43–66.
| Phaeocystis blooms in the global ocean and their controlling mechanisms: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFSh&md5=cd65524894c9e6eacd0049a1c1d5ae3dCAS |
Schreiber, U. 2004. Pulse-Amplitude-Modulated (PAM) Fluorometry and Saturation Pulse Method. In ‘Advances in photosynthesis and respiration’. (Ed. G. G. Papagiorgiou.) pp. 279–319. (Springer: Heidelberg.)
Sedwick, P. N., Garcia, N. S., Riseman, S. F., Marsay, C. M., and DiTullio, G. R. (2007). Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance. Biogeochemistry 83, 83–97.
| Evidence for high iron requirements of colonial Phaeocystis antarctica at low irradiance.Crossref | GoogleScholarGoogle Scholar |
Seymour, J. R., Doblin, M. A., Jeffries, T. C., Brown, M. V., Newton, K., Ralph, P. J., Baird, M., and Mitchell, J. G. (2012). Contrasting microbial assemblages in adjacent water-masses associated with the East Australian Current. Environmental Microbiology Reports 4, 548–555.
| Contrasting microbial assemblages in adjacent water-masses associated with the East Australian Current.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSmtw%3D%3D&md5=a235feb9b962988bbe81afc682ccb4abCAS | 23760900PubMed |
Shaked, Y., and Lis, H. (2012). Disassembling iron availability to phytoplankton. Frontiers in Microbiology 3, article 123.
| Disassembling iron availability to phytoplankton.Crossref | GoogleScholarGoogle Scholar |
Sokolov, S., and Rintoul, S. R. (2000). Circulation and water masses of the southwest Pacific: WOCE section P11, Papua New Guinea to Tasmania. Journal of Marine Research 58, 223–268.
| Circulation and water masses of the southwest Pacific: WOCE section P11, Papua New Guinea to Tasmania.Crossref | GoogleScholarGoogle Scholar |
Sunda, W. G. (2012). Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Frontiers in Microbiology 3, article 204.
| Feedback interactions between trace metal nutrients and phytoplankton in the ocean.Crossref | GoogleScholarGoogle Scholar |
Sunda, W. G., and Huntsman, S. A. (2000). Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling. Limnology and Oceanography 45, 1501–1516.
| Effect of Zn, Mn, and Fe on Cd accumulation in phytoplankton: implications for oceanic Cd cycling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFymt74%3D&md5=8df13261b636db62e1744f5a407b8f5bCAS |
Timmermans, K. R., Davey, M. S., Van der Wagt, B., Snoek, J., Geider, R. J., Veldhuis, M. J. W., Gerringa, L. J. A., and de Baar, H. J. W. (2001). Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae). Marine Ecology Progress Series 217, 287–297.
| Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C. calcitrans (Bacillariophyceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVyjt78%3D&md5=6400b2de53d91378b07269198fb7ae2bCAS |
Townsend, A. T. (2000). The accurate determination of the first row transition metals in water, urine, plant, tissue and rock samples by sector field ICP-MS Journal of Analytical Atomic Spectrometry 15, 307–314.
| The accurate determination of the first row transition metals in water, urine, plant, tissue and rock samples by sector field ICP-MSCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1GisrY%3D&md5=5bd901ca79d85047c2300c8ed77c060fCAS |
Twining, B. S., Baines, S. B., and Fisher, N. S. (2004). Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnology and Oceanography 49, 2115–2128.
| Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFWqtLbF&md5=0fe0e9272c94f19691b7a7490b0ccb9aCAS |
Van Heukelem, L., and Thomas, C. (2001). Computer assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. Journal of Chromatography A 910, 31–49.
| Computer assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlyktg%3D%3D&md5=4247761f011862000bd129e4513576daCAS | 11263574PubMed |
Veldhuis, M., Timmermans, K., Croot, P., and Vanderwagt, B. (2005). Picophytoplankton, a comparative study of their biochemical composition and photosynthetic properties. Journal of Sea Research 53, 7–24.
| Picophytoplankton, a comparative study of their biochemical composition and photosynthetic properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFSj&md5=83725555a8420b54e0e84ba49715ffa9CAS |
Westwood, K. J., Griffiths, F. B., Webb, J. P., and Wright, S. W. (2011). Primary production in the Sub-Antarctic and Polar Frontal zones south of Tasmania, Australia; SAZ-Sense survey, 2007. Deep-sea Research Part II: Topical Studies in Oceanography 58, 2162–2178.
| Primary production in the Sub-Antarctic and Polar Frontal zones south of Tasmania, Australia; SAZ-Sense survey, 2007.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbbO&md5=cfeb05061b814daae0eb7f62ac8deb20CAS |